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THERMAL-HYDRAULICS MODULE, TH-3

HIGH TEMPERATURE GAS-COOLED REACTOR THERMAL-HYDRAULICS

1.0 Object of Module

The.object of this module 1s to present the basi: :':-+. .» of high
temperature gas-cooled reactor (HTGR) thermal-hydraulics. .. requires
the demonstratién of:

e How the actual reactor core geometry can be modeled for
simplified thermal-hydraulic analysis.

e What information is necessary to characterize t'.~ rhermal-
hydraulic behavior of the reactor.

e The development of the theoretical relations that permit
the computation of these thermal-hydraulic characteristics.

e The actual calculation of this information for the reactor.
This calculation requires the use of the ﬁTGR Thermal-
Hydraulics Code, the description of which is included in
this module.

The thermal-hydraulic characteristics éf the reactor are required
for the determination of:

e Fuel integrity
# Moderator behavior

e Coolant exit conditions

Helium compressor requirements

e Temperature feedback for reactor neutronics calculationms.




2.0 Content of the Module

This learning module contains the thermal-hydraulics of high
temperature gas-cooled reactors. Specifically, the module is concerned
with the temperature field, the heat transfer rates and the coolant
pressure drop in typical HTGR fuel assemblies.

As in all of the modules of this series, emphasis is placed on
developing the theory and demonstrating its use with a simplified model.
The model is carefully selected to insure that analyses based on it will
exhibit all of the important thermal-hydraulic trends of the typical reac-
tor. The description of the core of a typical high temperature gas-
cooled reactor and the modeling of its thermal-hydraulic characteristics
are treated in the next section of this module.

Following the geometry and modeling section, the basic theory
governing the temperature distributions, heat transfer rates, pressure
drops, and energy balance considerations 1is presented. The temperature
" distribution in the fuel is calculated assuming one-dimensional radial
heat conduction. In the graphite moderator a two-dimensional finite
difference calculation is used. The pressure drop in the coolant channelg
and the heat transfer coefficient for use in Newton's law of cooling ére
calculated from empirical relations developed for reactor coolant channel
flows. Energy balances for small axial segﬁents of the coolant channel
are used to step khe gsolution in the axial direction. Simple examples,
illustrating the individual calculations, are worked out in detail for
typical HTGR conditions.

The heart of the module is the HIGR Thermal-Hydraulics Computer Code.
Basically, the code solves for the rédial temperature distributions in

the fuel, moderator, and coolant at any axial station and then marches
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axially with an energy balance in the coolant. The code and its use are
described in detall. Included are a listing and definition of all vari-
ables, a discussion of all input requirements and resulting output, an
annotated flow chart of the code, an expianation of all options in the
code, and a listing of the code which.inclddes enough comment statements
to clearly indicate the operational steps heing performed. By proper
specification of the options the code can either be used as an individual
entity to study thermal-hydraulic aspects exclusively or as a subroutine
in the total HTGR module package to provide temperature feedback to the
other modules. Examples are worked out using the code. In typical
examples, the location ;nd magnitude of the maximum fuel temperature in
the HTGR are found and the effect of undersized coolant flow channels on

maximum fuel temperature and coolant outlet temperature are determined.



3.0. HTGR Fuel Geometry and Its Model

The typical high temperature gas—cooled reactor core is approximately
cylindrical in shape. A unit producing 3000 Mw(t) is composed of about
4000 fuel element assemblies. These fuel element assemblies are in the
shape of right hexagonal prisms about 31 in. high and about 14 in. across
the flats. The fuel element assemblies are arranged in about 500 stacks,
each 8 elements high, to form a core about 27 ft in diameter and 21 ft
high. To provide a flattening of the neutron flux (and hence the power
production) in the radial direction, the enrichment of the fuel in the
fuel element assemblies is varied in cylindrical zones. Dowels are used
to precisely align the fuel element assemblies. A small gap (about 0.04
in.) exists between the elements at room temperature to accomodate thermal
expansion. The core 1is surrounded by reflector and containment components
which increase the inside reactor vessel size to about 38 ft in diameter
and about 47 ft in height.

The hexagonal fuel element assemblies are machined from graphite which
acts as both the moderator for the neutrons and as structural support for
the reactor. The fuel, which generates heat internally during reactor
operation, consists of highly enriched uranium and fertile thorium in
carbide form. It is contained in fuel holes machined in the graphite.
These fuel holes, which are typically 1/2 in. in diameter, extend vertically
through about 95% of the 31 in. height of the right hexagonal prism. The
cooling of the fuel element assemblies is provided by the downward flow of
helium at about 50 atm. pressure through coolant holes machined between
the fuel holes in the graphite. A typical coolant hole diameter is 5/8 in.

The center-to-center spacing between fuel holes and between fuel and coolant



holes is typically 3/4 in. 1In each assembly there are about 200 fuel
holes and about 100 coolant holes. The cross section of a HIGR fuel element
assembly is shown in Figure 1.

In each hexagonal fuel element assembly the six coolant channels in
the corners of the hexagon are about 20% smaller in diameter than the other
coolant channels in the assembly. Since these smaller channels amount to
less than 6% of the total number, their smaller size will be neglected and
the model coolant channel diameter will be selected as that of the central
coolant channels. The coolant flow conditions in the model channel will
be taken as those for the average channel in the reactor.

The uranium-thorium carbide fuel is coated with layers of pyrolytic
carbon and bonded into rods. These rods fit into the fuel holes with about
a 0.010 in. diametricallgap at room temperature. The rods span about 957%
of the height of the fuel assembly element. To simplify the analysis, the
model fuel rod is assumed to span the entire height of the element and the
fuel rods are assumed to fit tightly into the fuel holes during reactor
operation.

The model fuel rod will have a variation in power demsity in the

axial direction. This variation will be taken as

Tz
q||' (Z) = q||l cos ,1_{_ (l)
o e

unless a computed actual axial variation is provided from another module.
In Equation 1, q''' represents the thermal source strength per unit volume
at any axial location Z, q'é' represents the thermal source strength per
unit volume at the center of the fuel rod (Z=0), and He is the extrapolated

height of the core. Both q''' and q‘é‘ are taken to be constant radially



Elemental '"Building Block"
of Core

Figure 1. HTGR Fuel Geometry




throughout the fuel in the fuel rod. The magnitude of q'é' is“representa-
tive of that of the average fuel rod in the core. The extrapolated height

is calculated from
H,=H+2L, (2)

where H is the actual height of the reactor core and Le is an extrapolation
length. The extrapolation length is the distance between the actual end

of the core and the location where an extrapolation of the waveform re-
presenting the actual neutron flux distribution within the core goes to

zero. From neutron diffusion theory Le can be shown to be about one

™ -

migration length for a bare core. The migration lené;b?can be calculated
from neutron diffusion theory [l,2,3]f

The triangular area shown hatched in Figure 1 represents the smallest
area that can be analyzed to calculate the thermal-hydraulic behavior of
the entire core. note that all except about 1% (at the periphery of the
hexagonal boundary) of the fuel element assembly can be constructed
exactly from combinations of this basic "building block." The remainder
can be approximated by this '"building block." The segment of moderator
enclosed in the triangular area will serve, in this module, as.the model
of the moderator for the thermal-hydraulic analysis.

The reflector regions at the inlet (top) and outlet (bottom) of the
core are each about 4 ft long. Therefore, for purposes of calculating
coolant pressure losses, the additional lengths of coolant channel at the
inlet and outlet of the core will each be assumed equal to 20% of the core

height.

*Numbers in brackets refer to items in References.
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4.0 HTGR Thermal-Hydraulic:Theory

4.1 Internal Heat Generation
As a result of nuclear fission in the fuel, heat is generated. The
rate of energy generation in the fuel per unit volume is called the

"yolumetric thermal source strength," q''', and can be calculated from
q''’ =B, Op ¢ 3)

where Ef is the energy released per fission reaction (energy dimensions),
fo is the fissionable fuel density (fissionable nuclei per unit volume) ,
&f is the effective fission microscopic cross section (dimensions of
area), and ¢ is the neutron flux (neutrons per unit area per umnit time).
Note that q''' has dimensions of energy per unit volume. The details of
this calculation of volumetric thermal source stfengthfare found in
Reactor Statics Module 8.

The volumetric thermal source strength varies throughout the reactor
since ¢, and perhaps fo, vary. For a cylindrical reactor, axial symmetry
of the reactor fuel is generally a reasonable approximation. Therefore
q''' reduces to a function of only the radius, R, and the axial position,
Z. Across any single fuel rod, the change in q''' is small (due to smali
change in R) and q''' can therefore be considered constant across its
cross section. Thus, for any single fuel rod q''' is a function of only
the axial position. Also for any small axial segment of a fuel rod (the
order of 2 to 3% of the total active length) the change in q''' is moderate.
Using a constant average value for any such segment thus introduces little

error into the analysis. This approximation is used in this module.
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The heat generation in any small segment of the fuel can_be obtained
by multiblying the volumetric thermal source strength by the volume of the
segment. For steady state conditions this energy must be removed from
the fuel. The mechanism by which this heat transfer occurs within the
fuel is thermal conduction.

Example 1

A HTGR containing 5600 fuel elements stacked 8 elements high generates
4000 Mw(t). The cylindrical core of the reacter is 21 ft long and 32 ft
in diameter. Each fuel element consists of a 3i.5 in. high right hexag-
onal prism of graphite 14.2 in. across the flats and has 132 0.620 1in.

diameter fuel holes each containing a tight fitting uranium-thorium fuel

rod. The volumetric thermal source strength of the fuel varies as q
q'é' cos (ﬂz/He). The extrapolation length for the fuel is 1 ft. Find
the average power per unit length (in kw/ft) and q'é' for the typical 21 ft
high column of fuel rods in the core.
Solution
The power generated in the typical 21 ft high column of fuel rods 1is

6

P total _ 4000 x 10
P = = - -
ave N (5600) (1/8) (132) 43,300 watt = 43.3 kw.

Pave - 43.3 kw
L 21 ft

The power produced by the average fuel rod column can also be cal-

Thus, per unit length the average power is

= yop ke
- 2.06 ft.

culated by integrating the power produced in each differential volume of

théjfuel rods. Thus,
: H/2
. ' )
= ree = tee
Pave J 9 av q’, cos (wZ/He)(wa/4)dz
v : ~H/2
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2

= (1, 02 q'!' /4 letn(nz/n ) 1y

-H/2

2

= (He Df

q'c‘,'/z) sin(mH/2H ) .

Solving for q'(')':
2P
tie ave

= 2
He Df sin(‘er/ZHe)

1

Btu )
watt-hr

(23 ££)(0.62 4n)” (5 157 stnltm (21 £0)/(2)(23 £0)]

(2) (43,300 watt) (3.413

= 4.86 x 10 Bru/hr-ft3.
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4.2 Temperature Distribution in the Fuel

For conduction heat transfer the heat flux is proportional to the

normal temperature gradient. When the proportionality constant is inserted,

q = -ka = (4)

n n 90X
n

where_qn is thé heat t;an;fer rate in the n-direction (energy/time), aT/axn
is the temperature gradi;nt in the n-direction (degrees/length), An is the
area normal to the n-direction, and k is the thermal conductivity of the
material (energy/degree-length-time). Equation 4, which is Fourier's law of
heat conduction, relates the heat transfer to the temperature ‘field and is
also the defining equation for the thermal ;onductivity. The thermal
conductivity is a material property and its magnitude in general varies
with the temperature of this material. Heat transfer properties of various
reactor materials are tabulated as functions of temperature 1in References
4, 5, 6, and 7. To reduce the complexity of heat transfer calculations, the
thermal conductivity is often assumed to be constant and evaluated at an
average temperature. The minus sign in Equation 4 assures thgt the heat
transfer is in the direction of decreasing temperature. Equa~ion 4 shows
that temperature gradients are required for heat transfer. 17 nuclear
reactor applications, where there are high heat transfer rates, large
temperature variations occur. One of the primary tasks of reactor thermal-
hydraulic analysis is the prediction of this temperature distribution in
the fuel.
The heat conduction equation in cylindrical coordinates,
2

] g +
or

2 2 ree
2oL Sl o
r 20 0Z

H =

ERIC 15
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and the initial and boundary conditions prescribe the temperature distri-
bution within the fuel rod. In this relation, the thermal conductivity,
k, and the thermal diffusivity, a, have been assumed constant. The
development of this equation is found in heat transfer texts [4, 5, 6]

and several simplified cases are given as exercises for the student.

For steady state conditions, the unsteady term on the right hand side of
the equation is zero, and for axial symmetry, the 6 variation disappears.
For HTGR applications axial symmetry.in the fuel rods is a reasonable
approximation and since it greatly simplifies the analysis, this assumption
will be made. It may also be observed that since the length of a fuel rod
is much greater than its radius, the temperature gradients in the radial
direction will be much greater than the temperature gradients in the axial
direction. Therefore, to a good approximation, the heat transfer in the
axial direction can be neglected with respect to that in the radial
direction, and the resulting temperature distribution and heat transfer
reduced to a one—dimensional case for any axial segment in which q''' may

be assumed constant. The governing differential equation for this case

reduces to the ordinary differential equation,

2
- $241d 4 9. (6)
dr rdr f

The solution of Equation 6 subject to the boundary conditions

T=T atr=0,
(o]

7N
O L ogatr=0
dr _

yields the temperature distribution in the fuel. The second boundary

condition is obtained from the observation that the temperature distri-




bution must be continuous across the center of the cylinder. Observing

that both q''' and k are constant and that

d2

dr

=

4

=

dT 1 d dT
r r dr (r dr (8)

N

Equation 6 can be written as

a (,4ty) _ _4a'' . (9)
dr dr k
f
Integrating twice results in
T.—_—._ﬂ.'_'_l_]:’_z_.*. C.clnr+¢C (10)
ke 4 1" 2°

Applying the boundary conditions of Equation 7, the integration constants

are

C1 =0,
(11)
C2 = To.
Substituting into Equation 10 gives
Tt
=T -3 2, (12)
o 4 kf

This relation shows the temperature distribution in the fuel to be
parabolic with maximum temperature at the center. The heat transfer rate
through any cylindrical shell can be calculated from Fourier's law which

takes the form

= - ar (13)
qr kf Ar dr

where Ar = 2mr(AL), AL being the length of the cylindrical shell.

[ Y
~I
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Of particular interest are the temperature and heat transfer at the

surface of the fuel; i.e., at r = r. = Df/2. At this location,

ey QT2
Te= T "%, Tt (14)
dT
qf = -kuﬂrf (aL) drir = rf
(15)

- ﬂrfz(AL)q"'.

Noting that nr% AL is the volume of the fuel rod segment of length AL, it
is observed that the heat transfer out of the r = Te cylindrical shell is
indeed equal to the total energy generated as calculated from (q''')
(fuel volume). For one-dimensional heat transfer all of the energy
generated within the fuel must be transferred out through the surface.
Example 2

Equation 14 relates the temperatures at the center and surface of a
heat-generating cylindrical fuel rod. This equation contains the thermal
conductivity of the fuel which, in general, is a function of temperature.
However, the analysis leading to Equation 14 assumes the thermal conduc-
tivity to be constant. Determine the temperature at which to evaluate kf
to make the assumption of constant kf compatible with a kf that varies
linearly with temperature.
Solution

The method of solution is to develop an expression relating To and
T% which assumes kf = a + bT and then compare this result with Equation

14. We begin with Fourier's law of heat conduction,

dT
q -kar ar

18
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Recognizing that q = q''' (volume) and Ar = 2mr(AL):

Q""" wrf(aL) = -k, 27r(AL) % .

f

Simplifying, separating variables, and substituting for kf:

q''' rdr = -2(a + bT)dT.

Integrating fromr = 0 to r = re with q''', a, b constant,
291 T
q'"! [g—] . aT+%T2] £
0 To
2
r
£ b 2 2
11 = = o - - —
1 4 a(Tf To) 2 (Tf To)
s[a+2 (@ +T)1(T -T)
2 o f o f
qlll ri
To - Tf = .

- b
4la+ S(T_+ T)]

Comparing this with Equation 14 written as

we see that the relations are equivalent for

k

b
g=aty @, +T.

Note that this is precisely equal to kf evaluated at the arithmetic

T + T

average fuel temperature: i.e., k(—Q_i—_f)_
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Example 3

In the HTGR Thermal-Hydraulics Code an expression for the average
temperature of the fuel between the r = rf/2 and Tt = Ty radii is required.
Show that this can be expressed in terms of the fuel centerline temperature,

To, and the fuel surface temperature, Tf, as

3 3
Te ave “8 ot 8 e

Solution

The average fuel temperature in any region is defined as

1
Tf ave vaT dv.

Expressing the differential volume and the temperature as functions of

the radius, r, (using Equation 12 for the temperature).

1 ¢ g"'r2
£fave =V f (To -k )27rdr.
rf/2

f
Noting that the volume contained between rf/Z and r; is 3/41rr§ and

integrating,

Tf ave 3nr 2
f r./2

4
1t
4 [éﬂ L2 _ P rf]
sz 2 L4 0 S 128 &,

5 qlllrfz

=Ty - 2k,

But q''' can be related to T and Tg by Equation 14 as

oo
>




Q .
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ql"rfz_T —T
4kf o f
Therefore,

T =T —é-(T - T.)
“f ave o 8 f

3 5

=8 T "8 T
. i
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4.3 Temperature Distribution in the Graphite Moderator

In theory, the temperature distribution in the graphite moderator
can be obtained by solving the.steady state heat conduction equation
(without internal generation) subject to the boundary conditions prescribed
along the periphery of the moderator. wever, the section of moderator
of interest is an irregular shape as shown in Figure 1. Therefore, the
bounding surfaces can not be expressed as lines of constant x, ¥, 6, r, or
7 in either a Cartesian or cylindrical coordinate system and as a result,
the boundary conditions are very difficult to apply. As a consequence, an
anai;tical solution for the temperature distribution would be very difficult
to obtain and even if obtained would be cumbersome to use. Thus, in the
present module, finite-difference methods are used to determine the
temperatures of interest in the moderator.

The basic finite-difference technique for determining the temperature
distribution in a body consists of placing a nodal structure in the body,
developing the system of algebraic equations that must be satisfied by the
nodal temperatures, and solving the system of equations for the individual
nodal temperatures,

The nodal structure is selected as a compromise between extreme
accuracy (many nodél points) and ease of solution (few nodal points).

The minimum number of nodes is restricted in the sense that there should
be a nodal point at each location where the temperature is of interest.
In general, ncdal points are placed along the boundary of the region of
{nterest and then at equal spacings throughout the interior. However, as
we will see later, the equal spacing is not a necessity, but simply a

convenience. Each nodal point serves a finite-sized segment of the body

22
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and has a well defined nodal volume and nodal surface area. The volume
of all the segments taken together must comprise the body of interest.
The temperature of the entire segment is taken to be equal to its nodal
temperature. One convenient way of thinking of a node is as if all the
material associated with each node is shrunk to the nodal point and the
nodal point is connected to all adjacent nodal points by thin rods having
the correct resistance to heat transfer. A numbering scheme must be used
to provide identity for the individual nodes. Using the fact that there
is no heat transfer through lines of symmetry, these lines can be replaced
by adiabatic boundaries and the region that must be solved greatly re-
duced.

The algebraic equations satisfied by the nodal temperatures can be
developed in two ways. The classic way is to recognize that the heat
conduction equation must hold at the nodal point and then to express the
partial derivatives that appear in the heat conduction equation:as their
finite~difference approximation. Consider the nodal structure shown in
Figure 2., It has been assumed that there are no changes in the Z-direction
so that the problem reduces to a two-dimensional one. The shape of the
body of interest suggested the use of the Cartesian coordinate system nodal
structure that was set up. The setting of AX = AY was done for convenience.
The heat conduction equation that must be satisfied at every point in the
body, and therefore at node 9, is

32T BZT q'"'
s+ 5+
9x oy k

= 0. (16)

The partial derivatives in this equation are now approximated as follows:
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1 2
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Figure 2. Finite-difference Cartesian coordinate system example
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aT _ -7
3y AY
59
aT _ T - Ty,
ay AY
913
oT oT - T -
) _ﬁl - -é—Y-I Ts = T9g T9 =Ty
ill - “lls9 913 _ _ &Y aY
2 AY AY
oy 9
T +T ,-2T
5 7 T3 9
= 2 * (18)
AY :

Substituting back into Equation 16,

T. +T,-2T T_+T ,-2T
10 8 9 1o
> #2138 .y, (19)
AX AY
FOI‘AX’:AY:
2
- 1Tt Ax) -
T8+T10+T5+T13 zwr9+-°1——$——k 0. (20)

This is the desired nodal equation for node 9. Similar equations can

readily be obtained for all interior nodes of the body. The extension

to boundary nodes and especially convective boundary nodes such as nodes

4 and 5 in this example is somewhat more difficult and will not‘be

_ demonstrated for this method. Instead, the energy balance method, which

is readily extended to all types of nodes, will be used in this module.
To show the equivalence in the methods, the nodal equation for node

9 will be determined by the energy balance method. For steady state
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conditions the sum of the energy added to each nodal volume through its
boundaries and the energy generated within the nodal volume must equal

zero. Otherwise, there would be a net energy input to the nodal volume
which violates the steady state (no changes with time) criterion. Thus,

for node 9,

rey -
dgsg + 9y 59 + 9549 + 9 349 + q'''(nodal volume) = 0. (21)

Each of the boundary heat transfer rates occur by conduction and can be

determined from Fourier's law,

T
qn - k An axn * (4)

Expressed in finite-difference form this becomes

AT
- - AT 22
q kA Axn. (22)

Applying this to each of the four boundary heat transfer rates,

Ty = Tg
9.9 = k(aY) (1) A
A0+ = k(aY) (D) T—l%—Ti (23
d5,9 = k(aX) (1) T%;{i
Ay3.9 = k(ax) (1) T—”A—;—E

Note that the minus sign in Fourier's law has been absorbed in the AT
and Axn for each term. In general, one may note that the temperature of
the node of interest always occurs behind the minus sign in the temperature

difference when the heat transfer rates are into the node. This obser-

26
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vation saves much tedious chasing of minus signs in developing the nodal
equations. Substituting the individual heat transfer rates into Equation
21 and noting that the nodal volume is (AX) (AY) (1),

T -T T,.-T T_-T T, .-T
AY 89 4 ay S20°9 e 759 L0 713 79

AX AX Y AY +q'' ' (8X) (AY)=0. (24)

For AX = AY this reduces to

L_.
+ + + - + AX = ( 20
T8 TlO TS" T13 4T9 k (a%) (20)

which is identical to the result obtained earlier.
The energy balance method will now be applied to node 6 to demonstrate

" how convective and insulated boundaries are treated. For node 6,
ree = ”
95,¢ + 990+6 + Yoy + q (nodal volume) 0. (25)

For the two conduction heat transfer rates,

Ts - Tg

AY
= k(%)

9546

) (26)
a,0., = k(D T
10+6 2 AY

The convective heat transfer rate can be obtained from Newton's law of

cooling,
q =hA(T_ ~-T). (27)
For heat transfer into node 6,
rg = h(%) (T, = Tg). ' (28)

Substituting these heat transfer rates back into Equation 25 and noting

9
~I
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that the nodal volume is (A§Q(A%9(1),

T, - T T, - T
T~ %, axTi0 " Te o) )y AX AT
W S84 S RGP (I - T F a0 (29
For AX = AY,
| 2
1 1 haX _ hAX Rt
T+ 7 Tt o Te "1 F 3) T6+u—L4k 0. (30)

This is the desired nodal equation for node 6. Note that the coefficient
of T6 is the negative of the sum of the coefficlents of the other tempera-
tures in the nodal equation. This observation can be used either as a
check or to obtain the coefficient of the temperature of the node of
interest.

With the energy balanos method, the nodal equations for the
remainder of the nodes in the example of Figure 2 can readily be obtained.
With some practice, most of the nodal equations can be written by inspec-
tion. Also, the extension of the method to three~dimensional and one-
dimensional Cartesian coordinate problems should be obvious.

Unfortunétely, not all problems can be readily treated with Cartesian
or even cylindrical coordinate system nodal structures. The present
problem of determining the temperature distribution in the graphite
moderator of the HTGR is such a problem. However, the energy balance
method is quite general and can be extended to different shaped nodal
volumes. Tetrahedron shaped nodal volumes are convenient for general
three-dimensional problems and triangular right prism nodal volumes are
convenient for two-dimensional problems since most bodies can readily be
decomposed into a number of these shapes. Replacing arcs with their

chords permits curved surfaces to be treated with little increased

28
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complexity and usually with acceptable accuracy. In the present moderator
temperature distribution problem, temperature gradients in the vertical
direction are several orders of magnitude less than those in the horizontal
directions so that the problem can be treated as two-dimensional.  Thus,
a triangular right prism nodal structure of unit depth (triangular in the
plan view) will be used.

An expression for the conduction heat transfer rates between nodes
having a triangular structure must first be developed. Consider the

general triangular nodal structure problem shown in Figure 3. The only

ql"

Figure 3. Triangular nodal structure example.
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restriction is that all of the angles of the triangles must be less than
‘or equal to 90°. The nodal equation for node B is obtained from the

following energy balance for steady state conditions:

9.8 + 9o + Gpsp + 4GB + Usp + qgen =0, (31)

To calculate the internal energy generation for node B the nodal
volume associated with node B must be defined. This nodal volume is
taken as.the volume (per unit depth) enclosed by the dashed lines
surrounding node B. This boundary is composed of perpendicular bisectors
of all the lines linking node B to the other nodes. With the nodal

volume of node B, V thus defined, the internally generated energy is

B’

dgen = 4" Vg (32)

The convective heat transfer rate can be calculated from Newton's

law of cooling as

9B =h Aconv B (T@ - TB) (33)

where Ac°nv B is the distance between the midpoint of the link between
nodes A and B to the midpoint of the link between nodes B and C times
the unit depth.

To calculate the conduction heat transfer rates the concept of
conduction shape factors is extremely useful. The conduction shape

factor for heat transfer between nodes 1 and 2, 812, is defined as

k 812 (T1 -T,)). (34)

9149 2

One sees immediately that for rectangular shaped nodal volumes the shape

30N
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factor is given by

= 35
sRect An/(Axn) (35)

where An is the heat transfer area perpendicular to the n-direction and
Axn is the spacing between the nodes in the n-direction. For triangﬁlar
nodes it has been shown by Dusinberre [8] that the shape factors are

related to the cotangents of the opposite angle of the triangles through

which the heat transfer occurs. Specifically for path BG,

1
SBG =5 cot BCG +-% cot BFG. (36)

Similarly, assuming no conduction through the fluid on the convective

boundary,

|

Spc = 5 cot BGC. (37

N

Writing similar expressions for the remaining conduction shape

factors and substituting into Equation 31,
k SAB(TA—TB) + k SBC(TC-TB) + k SBF(TF-TB) + k SBG(TG—TB)
- (BN = )
+ha o3 (T TB) +q' 7V 0 “ (38)

where

S . = 1/2 cot BFA

AB

S_ .= 1/2 cot BGC

BC o (39)
SBF = 1/2 cot BAF + 1/2 cot BGF

S_ .= 1/2 cot BFG + 1/2 cot BCG.

BG

31
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This relation can be simplified to

Ty
v
- L hehonv B 4 B
TB SB[SABTA + SBCTC + SBFIF + SBGTG + K T°° + o 1 (40)
where
hAconv B
Q - —— e
Sp SAB + SBC + SBF + SBG + m .

Similar expressions can be developed for each of the other nodes in the
problem.

The nodal equations developed above carry an implied assumption of
constant thermal conductivity. If the temperature varies significantly
from node to node and the thermal conductivity is a strong function of
temp;rature the validity of this assumption is in question. In this case,
a better thermal conductivity to use in each of the heat conduction
terms is the arithmetic average of the thermal conductivities evaluated

at the two nodal temperatures; i.e.,

kAB = [k(TA) + k(TB)]/Z. (41)

1f k(T) is substituted into the nodal equations the resulting equations
become nonlinear and more difficult to solve. = However, often the use
of a k evaluated at the average temperature of the problem suffices.
Here a nodal volume weighted k would be the best value to use, but is
tedious to calculate. Hence, a thermal conductivity evaluated at the
arithmetic mean temperature in the problem is generally used.

The nodal equations developed as described above for constant thermal
conductivity constitute a set of linear algebraic equations for the nodal

temperatures, These can be readily solved by standard, well-known methods

32
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such as matrix inversiorn, elimination, iteration, or relaxation. Each of
these methods are well suited for computer calculations which are generally
made for problems of more than a few nodes.

Equation 40 is in a form directly useable for iteration methods. In
iteration schemes, the temperature distribution in fhe body is first
assumed. (Any rough, but logical, estimate works.) Then these assumed
temperatures are substituted into the right-hand side (RHS) of the equations
to calculate the temperatures on the left-hand side of the equations.
Then the calculated temperatures are compared with the temperatures used
in the RHS. If they agree to the desired accuracy, the problem is over;
if not, the calculated temperatures are used in the RHS and the process
is repeated until the desired accuracy is achieved. Two standard iter-
ation schemes exlst. In Jacobi (total step) iteration, the temperature
in the RHS are updated after the entire set of equations has been used.
In Gauss-Seidel iteration, the temperatures in the RHS are updated as
soon as new values become available (from earlier equations in the set) .
In general, the convergence of Gauss—-Seidel iteration is somewhat faster.
Example 4

A HTGR fuel element assembly has a cross section as shown in Figure
1. The coolant hole diameter is Dc, the fuel diameter is Df, and the
spacing is S. At one level in the core the coolant temperature is TB,
the heat transfer coefficient is h and the volumetric thermal source
strength is q'''. Assuming no heat conduction in the axial direction,
set up the equations for an iterative scheme to compute the temperature’

distribution in the moderator.

33
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Solution
The section of moderator that must be analyzed is the hatched area of
Figure 1. An expanded view of this region with the nodal structure added

is shown in Figure 4.

D /2

PN ¢

NAOANONS AN

Ve
s
SONOUONNNNNRN

Figure 4. Geometry of Example 4 showing nodal structure.

The x and y coordinates of each of the nodal points are computed

first in terms of the 3 geometric parameters, Dc’ Df, and S.

34
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X, = § cosg - %_—Df' Y, =0

Xz =S cos% - %Df cos% Y2 = Df sing-

X3 =S cos% - %Df cos% Y3 = %Df sin—g-

x4 =0 Y4 =0

X5 = }&2/2 Y5 = Y2

Xe = X5 4 T = Y3

X7 = %‘Dc sin% Y7 =35 cos-% - E'Dc cos%
Xg = 0 Tg = Y3

Xy =0 | Y9=scos%—%nc_

The conduction shape factors are determined next. The cotangents
in the shape factors are expressed in terms of the nodal point coordinates

calculated above.

k
=1 - 1f r
S412 =3 (X:L XS) /Y5 + > km cot 3
=1
814 =3 cot [Arctan XS/Y5 + Arctan (X:L - XS)/YS]
S =1 x . +Ex -x)n
15 2 5°75 2 2 1 2
k
-1 - - 1f T
Sp3 =3 Ky = XD /(g -0 +5 PR
-
S25 = cot [Arctan (X2 - Xl)/Y2 + Arctan (X1 - xS)/Y5]
1
4+ = - - - -
5 cot [Arctan (X2 }(6)/(Y6 YZ) + Arctan (X6 xS)/(YG YS)]

1

R

S36 = % cot [Arctan (X./ - }(6)/(Y7 - Y6) + Arctan (X3 - }(7)/(Y7 - Y3)]
+ 5 cot [Arctan (X, - X)/(¥, = Y,) + Arctan (X5 = X))/(¥, = ¥,)]
o 7’1' 35 )
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_1 - -
S37 =7 (&g = X) /(5 = Yo
1 1 -
845 2)c5/3f5+2(x:L xs)/Y5
S., =% (X, - X) /(Y - Y,)) + 5 X (X -
s6 =7 Kp = Xg) /(g = ¥p) + 3 X /O =Y

=1 _ - 1 -
Seg =7 (Xg = X5)/¥g = ¥5) + 5 X/ (¥g = Yo)

1 .
367 5 cot [r-Arctan xﬁ/(\f9 - Y6) -~ Arctan x7 /(Y7 - Yg)]
+E - X/, - YD)
2 73 7 7 3

1
368 = 5 cot [Arctan XS/(Y8 - YS) + Arctan (x6 - XS)/(Y6 - YS)]

1
+3 (g - Y9 /Xy
S . = l-cot [21 - Arctan (Y, - Y.)/X_, - Arctan (X, - X Y/(Y, -~ Y.)
69 2 3 7 9 7 3 7 7 3
- Arctan (x7 - x6)/(Y7 - Y6)]
1
S79 5 cot [t - Arctan (Y9 - Y6)/x6 ~ Arctan (Y7 - Y6)/(X7 - X6)]

1

Sgg = 3 Xg/ (Yg = Yg).

The nodal equations can now readily be developed using the above
shape factors in the conduction terms. To assist in these developments,
sketches of the more complex nodal volumes are useful in helping to
visualize the heat transfer rates that must be taken into consideration.
Use is also made of the observation that lines of.symmetry can be treated
as adiabatic boundaries.

Node 1:
From the sketch for mode 1 on the following page,

oy ¥ Yoy ¥ 951 F 90sy T Ggen = O

ERIC 36
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~——

The last two terms may be combined by observing that they represent the
energy generated in the entire 15° circular segment of the fuel. With

this observation,

- T+ q'" I_p=o.

km812(T2 - T1)+ kmsl4(T4 - T1)+ kmS (T o6 D¢ =

1575

Letting

and writing the nodal equation in a form convenient for iteration,

2

11

T, = i (¢,,T,+S_,T, +S_ _T_. + 22———22 )
1 S1 1272 1474 1575 96 ko *

Node 2:

This node is similar to node 1 and its nodal equation can be written

by inspection as
2

1 "q" 'Df
Ty =5, 5120 ¥ S23T3 + SasTs + 5266 ¥ T3

37
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where
82 = 812 + 823 + 825 + 826'
Node 3:
Again by inspection,
2
T
T -l (s,. T, +S_. T +S..T_ + IE———Eg
3 S3 2372 3676 3777 96 km
where
3= 553 83+ 5y
Node 4:

0.

9,4 Y 95,4 =

Note that heat transfer between nodes 4 and 8 need not be considered
because there 1s no finite area through which this heat transfer can

occur. The use of image nodes (e.g. 5') across adiabatic boundaries

38
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helps in visualizing the problem. Solving for T4,

T, = —-(S T + S

)
4 4

45 5

where

84 = 514 1 Sys-

Nodes 5, 6, and 8 are simple pure conduction nodes.

Nodg 5:
1
T5 = ss(S 5Ty + Sy5Ty + 5,5T, + SgeTg + SggTy)
where
Sg = Sy5F 5y5 + 5,5+ S5g
Node 6:
Te = 'g(szeTz + SygTy + Sgels + SgoT; + SggTg * SggTg)
where
56=526+S36+556+567+568+569‘
Node 8:
T =i(s T_+S,.T, +85.,.T.)
8 8 585 6876 8979
where

39
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Node 7:

Note that the actual circular arc heat transfer area is indicated. This
will give a better representation of the heat transfer resistance in the

convective layer than the chord length.

43,7 + 9557 T 99407 ¥ Yeony = O

1T
kpS37(T5 = T+ K Se (Tg = Tp) + k Sog(Tg = T)+ h 57D (Ty = T = 0.
Solving for T7,
h D
ST

-3
T7—S7(837T3+S T, + STy + 2)

67°6 7979 24 k
m

where
h =D
S, 837+ Se7% Syt i
Node 9;
L h nDc
Ty =5, 560%e * S79T7 ¥ SgTs T T T

S
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where

h ﬂDc
S9 = 569 " %79 ¥ Seo T2k

This set of nine nodal equations can now be solved to defermine the
steady state temperatures at the nine nodal points in the moderator.
This is the set of equations built into the HTGR Thermal-Hydraulics Code.
In the HTGR Thermal-Hydraulics Code the equations are solved by an

elimination method, rather than by iteration, to save computation time.

11
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4.4 Temperature Drop in the Convective Layer

Allrof the heat generated within the fuel ultimately must be
transferred to the coolant. Thus, all of this energy must be transferred
through the fluid layer near the surface of the moderator. This heat
transfer mechanism, wherein the energy is carried away or convected from
the solid surface by a fluid in motion is called convection. The heat
transfer rate for convective heat transfer is related to the temperature
difference between the surface and the bulk fluid, the driving potential

for the heat transfer, by Newton's law of cooling,
=hA (T -T)).
q =ha (T -Tp) (27

This relation may also be taken as the defining equation for the heat
transfer coefficient, h. The bulk temperature,TB, is a mass-weighted
average temperature of the fluid in the flow channel. It is formally

defined by

j;pc UT dA
T, = S —. (42)

"B mC
P

This is the temperature that a thermometer would indicate if immersed in
a cup of fluid collected from the discharge of the flow channel in the
given location.

Relations for calculating h from the flow characterisftics and
coolant properties have been developed. These will be treated in a later
section of the module. For the moment, the quantity of interest is the
temperature drop across the convective layer. In terms of h this can be

obtained from Equation 27 as

12
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Tc - TB

where Dc is the coolant hole diameter.

e

nDc(AL)h

(4

2

-
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4.5 Pressure Drop in the Coolant

All of the energy generated by nuclear fission in the fuel must be
carried out of the reactor by the coolant which flows in the holes in
the moderator. In a HIGR the coolant is gaseous helium which is force-
circulated by a compressor. Enough pressure head must be provided by
the compressor to overcome the pressure 1ossesiin the helium flow loop.
The entire loop consists of the reactor flow channels, the heat exchangers,
and connecting piping. Of interest here is the determination of the
pressure loss incurred in the flow through the reactor core. Two types
of pressure losses will be considered. These are the frictional pressure
loss along the coolant channel and the entrance and exit permanent‘

pressure losses.

The frictional pressure loss is a manifestation of the shear stress
on the flowing fluid by the walls of the flow channel. This pressure loss

is calculated from

2
AP, = £ AL-EEE—
F D 2g °
(o4 (o4

(44)

This relation may also be interpreted as the defining equation for the

friction factor, f. The bulk velocity, U,, found in Equation 44 1is the

B’

velocity averaged across the flow channel. It is defined by

f U dA. (45)
A

This velocity is related to the mass flow rate by

=
"
> =

m = pAUL (46)
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or to the mass velocity by

. .
G = e pUB. (47)

The value of the friction factor depends on the flow and surface
conditions in the channel. The flow conditions are characterized by the

Reynolds Number,

Re = . . (48)

It is well known that for Re below a critical value the flow is laminar,
and for Re above the critical value the flow is turbulent. For intermal
flows this critical Re is about 2000. Laminar flow may be thought of as
an ordered process in which fluid layers slide over one anofher, being
retarded only by ;he molecular interaction between the layers. The vis-
cosity of the fluld quantifies the magnitude of this interaction. In
laminar flow any disturbance in the fluid is damped by the viscous
action. In turbulent flow there 1s an additional random transport
mechanism operable. This mechanism may be modeled as eddies (finite sized
patches of fluld which retain their characteristics for finite times)
moving throughout the fluid, transporting mass, momentum, and energy by
virtue of their movement. This action is quite violent and results in
transport rates much greater than those by purely.mlecular activity in
laminar flow. In turbulent flow, disturbances in the flow field grow
and pfopagaﬁé resulting in incfeased turbulence levels downstream of the
disturbances. Even in highly turbulent flows, there exists a layer near
the solid bounding surfaces where the presence of the wall retards the

pénetration of eddies and therefore acts as a flow stabilizer. This
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results in a laminar sublayer existing near any solid boundary. Even
though this layer is very thin, much of the temperature and velocity
change between wall and bulk conditions occurs in this layer. In reactor
coolant channels the flow is highly turbulent with Re of the order of
100,000 and g;eater quite common.

The surface condition of the flow channel is characterized by the
ratio of the surface roughness height to the diameter of the
flow channel, E/Dc. The flow channel exhibits smooth tube behavior if
the roughness height is less than the thickness of the laminar sublayer:
For reactor coolant flow channels the surface conditions are controlled
so that this criterion is met.

The smooth circular tube friction factor for the coolant channel
can be determined from a Moody chart where f is plotted versus Re.
These charts are found in most fluid mechanics texts and handbooks [7,
9, 10, 11]. An alternate method is to calculate f from a correlation in
equation form. One of the most widely accepted for the.turbulent flow
conditions of reactor work is

g - 0.18 |
circ Re0.2 ' (CEY

This relation, like the Moody diagram, was obtained from a curve fit to
experimental data in smooth circular tubes. The friction factor defined
in this module is the Darcy-Weisbach friction factor. Care must be taken
not to confuse this friction factor with the Fanning friction factor
(fFan = fD_w/4) also found in the literature.

The permanent pressure losses at the inlet and exit are the result

of increased viscous energy dissipation resulting from increased turbulent

16
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activity. These losses may be calculated from

AP_ = K —— . (50)

In this relation K is the resistance coefficient fgr the inlet or exit
geometry. The inlet may be approximated as a sudden contraction from a
very large diameter to the coolant hole diameter. For this sudden
contraction, the resistance coefficient is 0.5 [11]. Similarly,
the exit may be approximated as a sudden expansion from Dc to a very
large diameter. For this expansion, K is 1.0 [11].
Example 5 !

The HTGR described in Example 1 has an inlet coolant temperature of
600 F, an inlet coolant pressure of 701 psia, and a coolant mass velocity
of 8.3 x 104 lbm/hr—ft2 through coolant holes 0.826 in. in diameter. The
coolant exit temperature is 1400 F. Estimate the frictional pressure loss
in the core. Neglect entrance and exit losses.
Solution

To obtain a one-step estimate, the coolant properties are evaluated
at the average coolant temperature and pressure. The average coolant
temperature is 1000'F. The average pressure will be assumed_;o be 700
psia. (This must be checked later.) At these conditions the helium

properties required in the solution are

p = 0.0889 1lbm/hr-ft

2
(700 2Ly (144 10
P in ft 1bm
P T BT T (3g £=IBE) (1460 Ry 0-17 £e3
bm-R

The average coolant velocity is found from

Ug = G/p = (8.3 x 10% 1bm/hr-£t?)/(0.179 bm/£t3) = 464,000 ft/hr = 128.8 ':’:c'

(%S
~I
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The Reynolds Number is

Re

Ug D

(464,000 £t/hr) (0.826 in.) (

p/u

ft

12 in ) (0.179 1bm/ft3)/(0.0889 lbm/hr-ft)

64,300.

Using the circular tube friction factor correlation,

£ = 0.184/Re®2 = 0.184/(64,300)°2

= 0.0201.

From the defining equation for the friction factor,

APF

The average

the assumed

Example 6

2
£(AL/D,) ¢ Ug/28,

(0.0201) (21 ft)(lgg%24)(120 1n./0.826 1n.)(0.179 Ibm/ft>)

(464,000 £t/hr)2/(3600 sec/hr)? (2) (32.2 lbm-ft/sec’ - 1bf)

282.8 1bf/ft2

1.96 psi.

1.9¢6
2

value of 700 psia was acceptable for t.e density calculation.

pressure in the core is 701 - = 700 psia. Therefore,

Each coolant channel in the reac.o. core ha:: the same pressure drop.

If all coolant channels are not identical tie flow will redistribute such

that this equal pressure drop is attained. Determine the relation

between average velocity in the coolant channel (or equivalently the

18
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mass velocity) and the diameter of the channel which governs the flow
distribution.
Solution

The frictional pressure drop is given by

2

U
AL "B
AP = f 822,
D 2g
[o] [o]

Substituting for the friction factor,

o2
0.184 AL P°B

AP =
2e0-2 D_ 28_

2
0.184 AL P°B

—

(U D p)O.Z DC gc

1.8 1.2
a UB /Dc

if the same density and viscosity are assumed for each channel. For

channels 1 and 2, each having equal pressure drop,

1.8, 1.2 1.8

1.2
Ugy /Py = Upy /Dy

or

- 2/3
Upy/Ugy = (D /D )" .




46

4.6 The Heat Transfer Coefficilent

No direct analytical methods for predicting the heat transfer
coefficient for turbulent flow in circular tubes exist. However, by the
use of an analogy between heat and momentum transport, the dependence of
h on the flow field characteristics, i.e., on the Re can be predicted.
Then by applying the-results of an heat transfer analysis for flow over a
flat plate an estimate of the Prandtl number dependence can be obtained.
The Pr may be interpreted as a dimensionless modulus relating the temper-
athre field in the fluid to the flow field. For Pr of unity, similar
velocity and temperature profiles exist in the fluid. Finally, the
predicted expression for h is compared to empirical correlations found
to fit the available experimental data.

The heat transfer across a fluid layer in laminar flow may be calcu-

lated from Fourier's law'
dT (51)

where y is the direction normal to the fluid layer., Similarly, the shear

stress in the fluid can be related to the velocity gradient by

du (52)

T=}J'a;.

which defines the viscosity coefficient w. These relations can be

rearranged to yield

-9 . _ 4 (53)
pC_A dy
P
and
T_, 4 (54)
p dy
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In these relations, a = k/DCp is the molecular diffusivity of heat and Vv
is the kinematic viscosity or the molecular'diffusivity of momentum. We
now postulg;e that the eddy transport of heat and momentum present in
turbulent flow can be expressed in the same form. To this end, we define
the eddy diffusivity of heat, EH’ and the eddy diffusivity of momentum, EM’
as the parameters, that, when multiplied by the appropriate gradient, yield
the corresponding transport rate for turbulent flow. In general, EM and

EH vary throughout the flow field. For the combined molecular transport

plus turbulent eddy transport,

-2 _ 41
°C A (a + eH) dy (55)
P
and
T du
I = . 56
. (v + ey ay (56)
We now assume that heat and momentum are transported by analogous
processes and at the same rate. This requires that @ = v and €, = €

H M’
Since the Pr = v/a, the first condition is equivalent to Pr = 1. Simi-

larly a turbulent Prandtl number may be defined as Prt = EM/EH. Therefore,
the second condition is equivalent to Prt = 1. The basic assumption we
have made also implies that both q and T vary in the same way across the

flow field; i.e.,

_q _ _ (57)
C At Constant = CAT °®
P pPww

if the constant is expressed in terms of quantities at the surface or

wall.

o1
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Dividing Equation 55 by Equation 56 and using the assumption dis-

cussed above,

&

CAT
PWW

du = - dT. (58)

Integrating this expression between wall conditions and fluid bulk

conditions,

q, ' UB TB
e a = - dT. (59)
CAT
PWW U T
w %
Using U = O, this reduces to
%
quB 6
—_—w D _ - . 0)
CpA.wrw Tw TB' ¢

To introduce h into this expression, Newton's law of cooling (Equation 27)

is used to give

Ly

h=1r—Fr—. (61)
Aw(Tw TB)
Substituting Equation 61 into Equation 60,
Cr
h = 2% (62)
Up

The shear stress at the wall can be eliminated from this expression
in favor of the friction factor. To do this, T, is first related to the
pressure loss over the length AL of the channel and then Equation 44
relating the pressure loss and the friction factor is used. Consider
the fluid in a section of channel of diameter D and length AL. For fully
developed flow, the sum of the forces acting in the flow direction must
equal zero. The forces that must be considered are the pressure forée

.2
on the upstream circular face, ZD P, the pressure force on the downstream

52
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face, %Dz (P-AP), and the shear force along the periphery, nDAIl"rw. ‘Summing

these forces with proper regard as to their direction gives

T p%p = n paLT + L D% (P-AP) (63)
4 W 4
or “
D
=D 4
Tw T L T

Using Equation 44 for AP, this becomes

2 2
pU pU
. D "B _ B
W ur o2 T f s (64)
Substituting Eqﬁation 64 into Equation 62,
h=C_ puU, = (65)
pp B 8"

Introducing the Stanton Nvuber, a convenient dimensionless grouping

common in heat transfer work, Equation 65 becomes

St =

f
=3 (66)

Using Equation 49 for f,

St = 0.023 Re 0°2. (67)

This result is often found expressed in terms of the Nusselt number defined

as

Nu = El—)- . (68)

One common interpretation of the Nu is that it is the ratio of the actual

convection heat transfer from a surface to the heat transfer assuming that

33
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only molecular conduction were present. Noting that

&
5t = h _ _Ku (69)
(C u’(pDU Pr Re °*
we can rewrite Equation 67 as
= 0.023 Pr Re¥' 8, (70)

The Pr dependence found in Equation 70 is not correct. One reason
why this incorrect dependence appears is that Pr = 1 was assumed early
in the development; therefore, one would not expect the Pr dependence to
be properly represented in the result. The analysis of laminar flow heat
transfer from a flat piate, one of the few cases which can be treated
analytically, yields a Prll3 dependence is an expression for the Musselt

number. In practice it turns out that this Pr1/3

dependence is reasonably
accurate for the turbulent pipe flow case of interest here as well. In
fact some of the empirical correlations found in the literature exhibit

this Pr1/3

dependence in the Nu(Pr, Re) relation. However, the relation
that is the best known, most widely used, and is recommended here is the

Dittus-Boelter Equation [12].

Nu = 0.023 Re’* 8 pr”. (71)

For the fluid in the tube being heated the recowmended value of n is 0.4
and for the fluid in the tube being cooled the recommended value cf n is
0.3. The former case is the one found in reactor work. In Equation 71
several temperature dependent fluid properties appear (ky ps u> cp),
These properties are to be evaluated at the average bulk temperature of

the fluid for the segment of tubing of interest. The heat transfer
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coefficient determined from Equation 71 is the average value around the
circumference of the coolant channel.
Example 7

Determine the average heat transfer coefficient for the HTGR described
in Examples 1 and 5.
Solution

The average heat transfer coefficient corresponds closely to that
calculated at the average coolant conditions; i.e., 1000 F and 700 psia.

Additional fluid properties required for this calculation are

(¢}
]

1.248 Btu/lbm-F,

=
]

0.167 Btu/hr-ft-F.

The Prandtl number is

Pr

C_ w/k
p ¥

(1.248 Btu/1bm~F)(0.0889 lbm/hr-ft)/0.167 Btu/hr-ft-F)

0.664.

From the circular tube Nusselt number correlation,

0.023 Reo'8 Pro'4

Nu

0.023 (64,300)°°8 (0.664)0"% = 137.2.

=3

Calculation of from the definition of Nu gives

=2
]

(Nu) k/Dc

(137.2) (0.167 Bru/hr-£e-F)/(0.826 in.) (35—

332.8 Btu/hr-ft-F.

L 8

25
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4.7 Incremental Energy Balances

As heat is transferred from the fuel to the coolant, the temperature
of the coolant rises. Thus, the coolant temperature varies from a minimum
at the inlet of the coolant channel to a maximum at the exit of the rore.
The bulk temperature at any axial position can be determined from an energy
balance where the total energy added by heat transfer to the coolant is

equated to the emergy rise of the coolant, 1i.e.,
Bl o= B —f a @ @ (72)

where q' is the heat transfer rate per unit length of fuel rod. Noting

that for a monatomic ideal gas AL = C AT this can be rewritten as

B’ ~
Tp = - T——— jf e (2) dz. (73)
H/2 -

Equation 73 can be used to determine the bulk temperature increase for

any segment, AL, of the coolant channel by
Z -AL/2
c

-1 ‘ O (74)
T~ Tp1 =& ¢ q.(2) dz
P Zc+AL/2

where Zc is the center of the increment under consideration. Defining

an average surface heat flux for the increment, ag = ac/Ac’ the incremental

bulk temperature rise becomes

T, - T,, =—=—q% . (75)

The local surface heat flux, qg(z), is related to the local volumetric
thermal source strength by observing that all of the energy generated in

the fuel is transferred into the coolant at the coolant-moderator surface,

w_ dz q'l (2) =2 b 4z q'"' (D). (76)
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The factor of 2 on the right-hand side accounts for the fact that the
energy generated in two fuel rods i1s transferred to each coolant channel.

This simplifies to

2
D¢
qé'(z) = E qlll(z). . (77)
c
Similarly,
_., o
vt T
9 m 4 (78)
c
o7
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5.0 The HTGR Thermal-Hydraulics Code

The HTGR Thermal-Hydraulics Code calculates the thermal-hydraulic
performance parameters discussed in Section 4 for the HTGR model described
in Section 3. The basic operational steps of the code are listed below.
1. Real =— integer conversions
2. Definition of statement functions
3. Accept and print input
4. Calculate gecmetrical parameters of reactor
5. Calculate shape factors for finite-difference

equations used in moderator temperature
distributlion calculation

6. Determine calculation increment

7. Calculate inlet pressure loss,

8. Initialize to 1lst calculation increment

9. Calculate bulk temperature rise and average

temperature for lst increment

10. Calculate average coolant properties for lst
increment
11. Calculate pressure loss, exit pressure, and

average pressure for lst increment

12. Calculate heat transfer coefficient for 1st
increment
13. Calculate moderator temperature distribution for

1st increment

14, Calculate temperature distribution in fuel for
1st increment

15. Print 1st increment output
16. Repeat steps 8-15 for remaining increments
17. Calculate exit pressure loss and core exit pressure

18. Print coolant exit conditionms.
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The details of these specific steps requiring further explanation
are found in the discussion below. A flow chart showing the calculations
and logic is given in Section 5.4.

The statement functions are used for convenience in calculating
property data. These statement functions are in the form of some property,
either of the coolant, moderator, or fuel being the function of the
corresponding temperature. All of the function forms are polynomials
obtained by fitting polynomlials of various degree to tabulated data. The
order of these polynomials varies, having been selected to insure that it
is accurate to written 2% over the range of interest of the parameter.

A detailed discussion of the input requirements is deferred until
Section 5.2. For the moment it suffices to note that this input is
supplied on three cards; one each for the geometry, the inlet flow
conditions, and the reactor power level.

The temperature distribution in the moderator is calculated from
the nodal equatiéns developed in Example 4. As preliminary calculations,

the coordinate locations of the nine nodal points and the conduction

shape factors are determined from the coolant hole diameter, fuel diameter,

and spacing supplied as input to the code.

In the code, the model coolant channel, fuel rod, and moderator are
sliced into short segments which are stacked axially to form the proper
length core. The actual length of these segments is selected as a compro-
mise between the very short segments for which the assumption of constant
properties over the section axially is accurate and the very long segment
which minimizes the computer time. An increment size equal to 1/50 of

the active core length is built into the code. To study the effect of
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increment size,or to save computer time,this can readily be changed by
altering two lines of the code.

After the increment size has been computed,the coolant conditions at
the beginning of the first incrementAare established.‘ Thé bulk temperéture
and mass velocity at the entrance‘of the first increment are set equal to
the core inlet conditions provided in the input. The pressure at the
entrance of the'first calculation increment is obtained by subtracting the
inlet pressure loss, computed from Equatioﬁ 44 and Equation 50, from the
pressure at the inlet of the core. In addition, counters required in the
code logic are set equal to 1, denoting the firét increment. |

The first major caiculation in ghe code is the determinatioﬁ of the
bulk temperature rise for the first calculation increment. This temperature )
rise is calculated from Equation 75 with ag determined from Equation 78.
For small calculation increments, the average volumetric therﬁal source
strength can be accurately approximated by evaluating Equatién 1 at H/2
-AL/2; i.e., at.the center of the increment.

The average bulk temperature, T,, for the increment is taken as the

B?
arithmetic average of the inlet and exit values. All coolant properties,
.except the density; used in the pressure drop and heat transfer coefficient
calculatioﬁs are assumed to be functions of temperature only and are
evaluated at the average bulk temperature. The density is calculated from
the ideal gas law using the average bulk temperature and the inlet pressure
of the increment. |
Both the friction factor and heat transfer coefficient calculations

require the Reynolds number of the flow which is calculated from Equation

48. Then f and Nu are calculated from Equations 49 and 71, respectively.

60
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Knowing f, the pressure drop for the increment is calculated from
Equation 44. The heat transfer coefficient is calculated from the Nu
definition, Equation 68.

The temperature distribution in the moderator is calculated next.
To do this, the nine finite-difference equations developed in Example 4
are solved to yield the nine nodal temperatures. An elimination method
is used in this calculation. The moderator temperature distribution
calculation is complicated somewhat by the fact that both the moderator
and fuel thermal conductivities which appear in the finite-difference
relations are temperature dependent. Thergfore, an iteration on the
thermal conductivities is performed. The procedure is to assume average
moderator and fuel temperatures, evaluate the thermal conductivities at
these assumed temperatures from the statement functions, calculate the
moderator and fuel (procedure described in next paragraph) temperature
distributions and average temperatures, evaluate the thermal conductivities
at these new average temperatures, and compare the new and original
thermal conductivities. If the new thermal conductivities are within
2% of those used in the previous iteration, the calculated moderator
temperatures are accepted. If either thermal conductivity differs by
more than 2%, the calculation process is repeated until finally the 2%
criterion is met. The initial assumed average moderator and fuel tempera-
ture are estimated from the results of the previous calculation increment.
For the first increment, an initial guess is built into the code.

After the coolant channel and moderator calculations for the incre-
ment have been performed, the radial temperature distribution in the fuel

is calculated for the increment. First,the temperature at the outer

A1
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éurface of the fuel is found. This is taken as the area-weighted

average of the temperatures calculated at the moderator-fuel interface

in the moderator finite-difference calculation. The next step is to
calculate the temperature at the center of the fuel. In this calculation
axial symmetry is assumed and Equation 14 is used. 1In Equation 14 the
thermal conductivity of the fuel appears. This property is temperature
dependent and should be evaluated at the mean temperature of the fuel.
However, the mean fuel temperature 1is dependent on the temperature rise
across the fuel. Thus, an iterative-type of solution is called for. The

procedure used is to evaluate kf—I at Tf, calculate EO’ calculate

evaluate k at T compare k to k . 1If
fuel mean’ f-I1 fuel mean’ P f-1I £-I K
o, m - 1 .
kf-II is within 2% of kf-I’ accept value of TO. if kp g7 1s got within
2% of.kf_I, 1e; kf—I = kf—II and repeat the sequence. In this way, a

fuel thermal conductivity accurate to within 2% is used. The fﬁel
temperatures at the quarter, half, and three-quarter radii are then
calculated from Equation 12. |

After the calculations for the first increment are completed the
results are printed out. Discussicn of the output is deferred until
Section 5.3. It should be noted here, however, that in the output
tabulation the temperatures are reported as having occurred at the axial
center of the increment. In other words, for the first increment the
results are reported at Z = H/2 - AL/2. After thé results for the first
increment have been printed out, the code increments to the next segment,
and continues thies process until all 50 segments have been spanned.

After the completion of the calculations and printout for the 50

segments cf the core, the core exit conditions are calculated and printed.
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A calculation of the exit pressure loss using Equations 44 and 50 is

required. Then Pex and Tex are computed and printed, ending the compu-

tations.

63
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5.1 Nomenclature 5
Analysis Symbol Code Symbol Description l
A Area :
A Convective heat transfer area l
conv
Af AFL Flow area of coolant channel
An Heat transfer area normal to n- I
direction
Ar Heat transfer area at radius r
A Heat transfer area at surface =
¢ of coolant channel
Aw Surface area of wall l
Cl’ CZ’ C3, 04 Integration constants
COMPA1 CPMPAL Last iteration value of kf(Tfo) l
COMPA2 C@MPA2 Last iteration value of km('-fm)
Cp cp Constant pressure specific heat I
D Diameter
Df DU Outside diameter of nuclear fuel l
Dc DCL Diameter of coolant channel
Ef Energy release pe'r fission )
e ERR Error ratio ﬁ
f F Friction factor
1bm-ft
g . Dimensional constant = 32.174 —ﬂz——'l
c sec -1bf
G GIN Mass velocity
h HTC Convective heat transfer
coefficient
H H Height of active core
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Analysis Symbol Code Symbol Description
He HE Extrapolated height of core
i ENTH Enthalpy
iin Enthalpy at inlet of core
INC INC Increment counter in code

Thermal conductivity

wF‘F‘

KBC Thermal conductivity of the

coolant

km KM@ Thermal conductivity of moderator

Y

kf KFU Thermal conductivity of fuel

kf-I KFU1 Thermal conductivity of fuel - at
pre-iteration average fuel
temperature

kf-II KFU2 Thermal conductivity of fuel - at
updated average fuel temperature

K Flow resistance coefficient

Le Extrapolation length

AL DELL Length increment

m MD@T Mass flow rate

n : Exponent in Equation 71

fo Number of fissionable fuel
nuclei per unit volume

Nu NU Nusselt nﬁmber

Option (1) Option = 1 for cosine, Option =

2 for coupled program

P, PW Wetted perimeter

P PAV Pressure

Pl Pl Pressure at beginning of increment

P2 P2 Pressure at end of increment

Pex A PEX - Core exit pressure

65
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Analysis Sywmbol Code Symbol Description
Pin PIN Core inlet pressure
Pr PR Prandtl number
Prt Turbulent Prandtl number
AP Pressure drop
APE DELPE Exit or entrance pressure loss
APF_ DELPF Frictional pressure loss
q Heat transfer rate
'qf Heat transfer rate at Df
q, Heat transfer rate in n-direction
q, Heat transfer rate at Dc
q, Heat transfer rate at wall
Q,.. Heat transfer from node i to node j
i+j
q" Heat flux at D
c c
q Energy generated inside nodal
gen
volume
q'"’ QIrPAV Volumetric thermal source strength
q''’ QTFO Volumetric thermal source strength
° at center of core
q;ié QTPYLD Value of q''' used .in previous
increment
r Fuel rod radial coordinate
re Radius of fuel
R Core radial coordinate; also gas
) constant
RAT1 RAT1 Relative error in fuel thermal
conductivity between iterations
RAT2 : RAT 2 Relative error in moderator thermal
' conductivity between iterations
Re RE Reynolds nurber
S S Center-to-center spacing between

fuel rods and coolant holes

ERIC | 66
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Analysis Symbol Code Symbol Description

S, SI Coefficient of Ti in nodal equations

W

[~

S Conduction shape factor between

jk nodes j and k
St Stanton number
T T Temperature
To TO Temperature at center of fuel rod
’1‘1/4 T14 Temperature in fuel at r = 1/4 re
Ty /s T12 Temperature in fuel at r = 1/2 r
T3/4 T34 Temperature in fuel at r = 3/4 e
TB TBAV Coolant bulk temperature
TBl TB1 Bulk temperature at beginning of
increment
TB2 TB2 Bulk temperature at end of
increment
’1‘f TF Temperature in fuel at Df
Tfo TFPAV Average temperature in fuel
between r_./2 and r
f f
Tex TEX Core exit temperature
Tin TIN Core inlet temperature
’1‘c TSAV Surface temperature inside convective
layer
T Free stream fluid temperature
-}
Tw Wall temperature
AT Temperature difference
U . Velocity
UB UB Average velocity in flow channel
\/ Volume
b3 Cartesian coordinate
x Coordinate in n-direction
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Analysis Symbol Code Symbol Description
X Cartesian coordinate of nodal point
AX Node spacing in x-direction
y Coordinate normal to wall
Y Cartesian coordinate of nodal point
AY Node spacing in y-direction
Z . Axial coordinate
Zc ZC Axial location of center of incre-
ment
a Thermal diffusivity
€ Roughness size
€4 Eddy diffusivity of heat
ey : Eddy diffusivity of momentum
C] Angular coordinate
Atr Transport mean free path
.u VIS Absolute viscosity
v Kinematic viscosity
P RH@ Density
Ef ' Average fission microscopic

cross section

T ' Shear stress; also time
T Shear stress at wall
¢ Neutron flux
superscript- Average for calculation increment
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5.2 Code Input

The input to the HTGR Thermal-Hydraulics Code is intentionally
extremely simple. Only three cards are required; the first lists the
geometrical quantities, the second lists the coolant inlet conditionms,
and the tﬁird lists the parameters that describe the volumetric thermal
source strength distribution in the reactor.

The required input data cards are listed below. The units of each
parameter and their input format are included. Sample input cards are

shown in Figure 5.

)
Card 1 - Geometry
Df (in.) F 10.4
D, (in.) F 10.4
S (in.) F 10.4
H (in.) F 10.4

Card 2 - Coolant inlet conditions

G (1bm/hr-£t2)  E 10.3
T, (P F 10.1
Pin (psia) F 10.1

Card 3 - Power distribution

q''' (Btu/hr-fed)  E 10.3

He (in.) F 10.1

Option (pure number) I 10

On Card 3 the axial volumetric thermal source strength distribution

through the core is specified. For independent operation of the code

o and

(Option = 1) a cosine distribution is built into the code and q

L]
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Figure 5, HIGR Thermal-Hydraulics Code Input,
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Ho are the parameters which indicate its level and period. When the
HTGR Thermal-Hydraulics Code is coupled with other codes (Option = 2)
the cosine distribution is over-ridden by the actual power distribution

which is supplied by the main program.
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5.3 Code Output

Three sets of information are printed out. Each is printed under
completely explicit headings such -that there should be no interpretation
difficulties.

The first set of output information consists of a listing of the
input that was supplied to the code.

The second and main set of output is a tabulation of the temperatures,
h and AP for each increment in the core. The temperature printed out are
To’ T1/4, Tl/z’ T3/4, Tf, TB’ and T, through Ty in the graphite moderator.
From this data, observations of the maximum fuel and moderator temper-
atures and their locations can be made.

The third set of data reports the core exit pressure and temperature.
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"7"5.4  Code Flow Chart
(Start)

kg(T), k(D)
(T, u(T)

¥

Input:

D¢y D» S, H
G, P, , T

* "4n? Tin

q;", He, Option

\
Output:

D, D, S, H

G, Pin’ Tin

q;", H , Option

AL = H/50

)
Xi = Xi(Df,Dc,S)

Yi = Yi(Df’Dc’s)

i=1,9

t
]

Functional relations between
variables supplied to code as
polynomials.

Geometry, inlet coolant
conditions, and power distribu-
tion supplied to codc.

Printout of geometry, inlet
coolant conditions, and power
distribution.

Selection of calculation
increment.

Coordinates of nodal peoints
for moderator finite-difference
network are calculated.
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S k= S k(xi’ Yi) Calculation of conduction shape
. 3 _ factors for moderator finite-
jk = 12,14,15,23,25,26, : difference network.
36,37,45,56,58,67,
68,69,79,89
Qutput: Printout of nodal point coor-

dinates and shape factors.

xi’ Y'i
Sjk
Y
p =P, /RT Calculation of permament
in in
pressure loss at inlet.
U, = G/p
B
Re = UBDcp/u(Tin)
£ = 0.184/Re’"?
= ' 2
APy = 10f(AL/Dc) Ug /ch
" 2
P = 0.50Ug ./2gc.

\

P =P, -~ AP, - AP Initializing pressure, tempera-
1 in E F
ture, position, and increment
TBl - Tin counter for lst Iincrement.

Zc = H/2 - AL/2

INC = 1
T =T, + 300 cos wZ /H Initial guesses for averugze
m in c e
fuel snd moderator temperatures
~ for f£irst increment supplied
= 2
Tfo Tin + 300 cos c,Hn to code.

&

o




P RN R N N
q q, cosnzc/He

— 2 o
= 1
T Tg,tq:''7D /Zme

B2

= (Bytyy) /2
p = P /RTy
UB = G/p

Re = UpD p/ (T
£ = 0.184/ReC2

2
APy = £(AL/D )oU2/2¢

P2 = P1 - APF

|

Pr = 1.248u(T}) /iy (Tp)
0.4p0.8

[

= 0.023Pr
h = Ny kB(TB) /Dc

!

T +(T _T)(q"’il/q!lv

l ;m old

T = CaT Y a'' att
; Tfo TB+ cho TB'(q /qold
Vg s (n w o

| iSi( gl e )k(T)D »h)
| 1=1,9

71

Calculation of average bulk
temperature of coolant for
increment.

Calculation of pressure drop
and exit pressure for increment.

Calculation of average heat
transfer coefficient for
incxement.

Obtaining best guess initial
values for average fuel and
moderatc: temperatures for
finite-difference calculation.

C:alculation of coéfficients ol
T, in nodal equations,
o -
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TiaTi(Si’sjk’Tl’km(E_m) ’kf(Tfo) s Solution of moderator temperature

- distribution.
q' ' ,Df,Dc,h’TB)

|

T, = (T +2T,+T,) /4 Calculation of average temperatures
f 1 °°2°°3
at surfaces of fuel and coolant.

TC = (T+Ty) /2

ke, = kf(ff) = Calculation of fuel centerline
temperature. The thermal con-
ductivity of the fuel is eval-

uated at a mean fuel temperature
by an iterative technique.

— R 2

= tee
EP Tffq_- Df/16kf1
Tg = (THT ) /2

kep = ke(Tg)

l

e = |Gy -key) /iy

. \‘.,_ >
e:0.02 - £1 £2

COMPA1 = kf(ffo) Saving values of thermal con-

- ductivities for later comparison.
COMPA2 =. km(Tm)

N
N
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(r

-(3‘f +s?f)/s

T -('r T FTGHT HT AT T AT ) /9

374757677

RAT1 = | (COMPAL-k (T )) /COMPAL|

RAT2 = | (COMPA2-k (T )) /COMPA2|

RAT1:0.02
RAT2:0.02

- - = .2
xT —qt??
’1‘1/4 T -q Df/256 key

- 2
a7 ettt
Ty/o=To=a' " 'De/64 key

- - - 2
=T -Qq'!'?
Ty =To-90""'Dg/256 kg,

4

Qutput:

INC,Z 2T 0Ty 10Ty 90T

f,T TB,h AP

T Ty T3 T, Ts,

TerT 5 TgsTy /

Check to determine if correct
moderator and fuel thermal
conductivities were used in
moderator calculation. If not,
an iteration on the average
thermal conductivities is
performed.

Evaluation of fuel temperature
at the quarter, half, and three
quarter diameter points.

Printout for increment.

Check to see if'entire core
has been calculated.
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INC = INC+1 Initializing for next increment.

Z = 2 -AL
c c _

Tp1 = T2

P,=F

9514 1

p-PZIRTBZ‘ Calculation of exit pressure
losses.
UB-G/p
Re=UgD 2/u(Tpp)
£=0.184/Re’ "2
2
APF-10f (AL/Dc)pUB/.ch
2
APE-pUBIch
\
P __ = P_-AP_-AP Calculation of coolant core
ex
2 B F exit conditioms.
Tgx = TBZ
Y
Output: Printout of coolant core exit
conditions.
P , T
ex’ “ex
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5.5 Code Examples

The following two examples demonstrate the use of the HTGR Thermal-
Hydraulics Code for calculating the thermal-hydraulic behavior of a

typical HTGR.

Example 8.

A HIGR core is composed of 3000 right hexagonal prism fuel element:s,
each 16 in. across the flats and 32 in. high. The elements are stacked
eight high in the core. The uranium-thorium fuel in carbide form fits
tightly into 0.8 in. diameter fuel holes. The reactor is cooled by the
downward flow of helium which enters at 500 F, 600 psia and flows through
1.0 in. diameter coolant holes. The spacing between the fuel and coolant
holes is 1.25 in. The average coolant velocity in the inlet of the core
is 280 ft/sec. The average fuel rod produces 4.2 kw/ft. Assume an
extrapolation length equal to 5% of the core height. Determine the
magnitudes and locations of the maximum fuel temperature and the maximum

moderator temperature.

Solution.
The mass velocity, extrapolated core height, and peak volumetric

thermal source strength must first be computed from the data given.

2

. (600 22£) (144 185

G =p, U, , == y = 1 .. tL (
inBin RI, Bin (o {§i§%i;(soo + 460) R

ft sec
280 S5 (3600 229
= 7.35 x 10° lbm/hr-ft>

He = H + 2Le = K + 2(0.05H) = 1.10H
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(1.10)8(32 in.) = 281.6 in. = 23.47 ft

2
ZPave/[He Df sin(wH/2 He)]

2(4.2 kw/ft)(8)(32 in.)

(—EE ) (3413 Btu/kw-hr)/{(23.47 £t) (1.0 in.)>
12 in.

(ft/12 in.)2 sin[r (8) (32 in:)/2(281.6 in.)]}

2
3.79 x 10° Btu/hr-£t>,
From the output printout of the code (next 7 pages) we find,

= 889.7 F at Z
mod max

~3.63ft at node 1 “

962.9 F at Z

Tfuel max -2.77f¢t.
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A0 ok ok ook ok ok ok ok ok ko Rk kR ok R ok Kk

HTGK THERMAL-HYDRAULICS CODE
ook ok ook ook o kR Rk kAR Rk Rk k ok R

INPUT DATA

FUEL U.D COGL QeDe SPACING ACTIVE CORE LENGTH
(INCH) ( INCH) (INCH) ( INCH) ‘
MASS VELOCITY CCRE INLET YEMPERATURE CORE INLET PRESSURE
(LB/HR-FT*¥2) : (F) {PSIA)
0.2350E (6 500.00 600.00

VCLUMETRIC THERMAL EXTRAPOLATED HEIGHT
SOURCE STRENGTH

(BTU/HR-FT*%3) ( INCH)
Ce379CE (7 281.60
OPTION 1

END UF INPUT DATA
ok ke on kR ok kR R gk ok ok kR kR K

COORDINATES OF THE NODES

DFU=0.0667 0C0=0.0833 $=0.1042

NUDEL NUMBEK X COCRDINATE Y COOKDINATE
1 0.18750E-01 0.00000E 00
2 0.23216E-01 0.16667E-01
3 0.35417E-01 0.28868E-01
4 0.00000E 00 0.00000E 00
5 0.11608E~-01 0.16667E~01
6 0.11608E~01 0.28868E-01
7 0.20833E-01 0.54127E-01
8 0.00000E 00 0.28868E-01
9 C.00000E 00 0.48544€E-01
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sHAPE FACTUORS.

PaTn SHAPE FACTuUk

S4> Je 5625CICE U0
Sl4 : 0.3117672E 00
Sib Je482212CE 00
Slzm 0.2142€28t 00
Silk Ve B0660254E U0
S&b Ve.1161010E 01
S26 Ue 4999598t 00
S-24 Ve4T757009E 00
<. Ve 8L60254E U0

Ue.9514CLl7E OO0
e Je4 757009k 0O
Sy Ue2949650C U0

Soue U.1373098L 01
Sso Ue4310531E U
So7 Ve427652CE O
Sy Ve3509365E 00
S317 Ve lB20l62E 0V
S79 Ue41l06829t IV

AT THe INLET JF THE CCURe

CHANNEL AVEe VELUGCITY FEYNOLLS # FRICTION FACTOR
(FT/SEC)
279.57 <80285,.,9 U.0150

e 0 e e R R R RSORS00 ool R 0 A e Rk B o e e e ol o o
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NU
T
TN(T)
1
52561
Z
53543
3
54543
4
5L 0e4
b
565.8
o
57643
7
58740
8
597e0u
9
6uBeT
10 .
6l%.6
li

63uU.b

80

Z-L0C 10 T1l/4 T1/2 T3/4
NGL) TN(2) TN(3) TN(%) TN(S) TN(6)
TN(B) TN(9) TSURF TBULK HTCOF
10453 551.7 551.2 548.2 543.8
538.7 537.7 53645 536.9 535.8 533.1
532.6 525.4%4 525.6 500.6 690.9
10.027 569.8 569.1 565.1 559.3
5525 551.2 549.6 550.1 54867 545.1
£44.5 535,.,0 535.1 502.0 691.0
9600 588.4 587.5 582.5 575.2
$66.8 965.1 563.1 = 563.7 562.0 557.4
55667 544.8 545.0 503.8 691.1
S.173 6GT.1 606.1 600.1 591.4
58le3 579.3 576.8 577.6 575.6 570.1
569.2 *554.8 555.1 506.0 691.2
BeT41 62640 624.8 617.9 607.8
53660 593.7 590+ 8 591.7 589.3 5829
561l.9 565.1 565.5 5085 6914
£.320 64540 643.6 635.7 02442
610.9 608.2 605.0 606.0 603.2 595.9
594.7 575.06 576.0 .511.5 691.6
7893 663.9 662+4 653.6 64067
62509 622.9 . 619.2 6203 £17.3 609.0
60T.7 58642 586.6 514.8 691.9
1467 682.8 681.2 671.5 657.3
v4Je9 637.6 633.5 634.8 631.3 622.2
62047 596.9 597.4 5184 692.1
7.040 701.6 699.8 689.2 673.8
65569 0652.3 647.8 649.2 6455 635.4
633.8  607.7 608.2 522.4 692.4
6.013 720.2 718.3 T106.9 690.1
6709 667.0 662.1 663.6 659.5 646.6
646.9 618.5 619.1 526.7 692.7
64187 73840 736.5 7243 7064
685.8 68le5 676.3 677.9 6T13.5 661l.8
659.9 629.3 629.9 531.3 693.0

85

TF

DELP

537.7
21.86
551l.1
21.90
565.0
21.96
579.2
22.02

5

93.6
22.09
608.1
22417
6227
22.27
637e4
22.37
652.1
22.48
6667

2260

68l.3

22612



12

v4led

13

652+ 3

14

0b3.u

1o

vl3a5

Lo

Ub.‘;.g

17

Gl e 1

lu

Tided

13

(13.7

23

12341

21

7')2.1

2

14G.8

£s

749.1

‘J‘.TO
7UJ.b .
ol2.8

De33
Tlwey
€656 6

4.950
729.2
6GH8e2

4e4d
743.1
710.6

‘1.05
79C a0
1l.0

3 .QZ
To9.8
734.4

3420
13245
7458

ol
7() (f.b
150.4d

. 2.34
BUbe2
767.4

1.92
0lTe.2
T177.4

l.49
82765
787.0

L.Ub
B37a2
7960

0 756.0
09"
6490el
3 174.5
Tlue2
650.48
7 T791.5
Téi4a1
66l1.5
¥) 808.1
737.8
6T7T2ev
3 8242
75la1
632 eJ
7 839.7
To4.0
692.4
U 85‘3.‘)
1765
7C2e3
3 B63e0
78845
711.9
7 88l.7
799.9
721.2
U 894.1
81J.8
T3Ge2
3 9CHeY
82l.0
7338
7 Tléeu
¥830.%
147.1

81

754 .4
650.4 692.9
640.8

771.9
T04.2 70660
6515

789.0
717.9 719.8
66242

805%.6
731.2 i32.2

82is6
7‘lt“’.3 ?4‘).3
€B83.1

83649
750649 159.9
693.2

8510
76G.1 T71le3
703.2

865%.6
780.9 783.1
712.8

| 87847
792.1 79444
722.2

891.0
83248 805.1
731l.2

902.4
8lZ.9 8l5.2
739.8

91Z.9

82203 82447
748.1

86

T14l.4
EoTed
L36.¢

T5te2
Tulel
54l.4

Tl4.¢
714.5
546.9

790.5
727.7
5524

8uS.%
140.6
55845

82Ca7
75340
50647

U34.Y
765.1
5710

{)48.‘0
17647
577.5

boled
787.8
584.1

6731
768 o4
5906 Y

t84e3
t08B.4
5978

BG4e5
Bl7.7
6U4. 7

12463
674.8
69363

138.9
687.7
693.7

753.4
700.4
694.1

768.4
712.9
094.5

78249
725.1
694.9

79649
736.9
655.3

310.4
7146 .4
695.7

323.3
7565
696.1

33545
77C.2
096.6

847.0
- 78C.3
697.0

8577
789.9
6975

8677
799.0
697.9

22430
709 .9
23400
723.8
23.15
737.5
23.31
155 .4
23.41
163.7
23.04
176.2
23.481
783 .1
23499
799.5
24.17
8lC.4a
24.36
820495
24455
830.1

24.74
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24 0.640 925.5
846.1 839.4 831.1

75649 804.4 754.9

25 0.213 934.0
854.3 847.5 839.1

164.4 8l12.3 7624

26 -0.213 941 .4
86l.6 8549 846.5

771.3 8l19.5 769.3

27 -00640 947.8
868.2 86l.4 853.,0

7778 826490 775.8

28 -1le067 953.0
873.9 86762 858.8

7834 831.8 781.8

.29 -14493 957.1
878.8 " 872.1 863.7

7692 837.0 787.2

3v -1.920 960.1
882.8 87661 867.9

7941 84len 79242

31 -2.347 96109
88543 879.3 871.2

79845 845.1 79645

32 -24773 962.5
888.0 88l.6 873.6

8ule3 848.0 800.3

33 -3.200 962.0
88943 883.0 8715.2

8U5.5 850.1 803.6

34 . ~-3.627 960.4
88946 88346 876.0

8038.1 851.6 806.3

35 ~4,053 957.6
889.1 883.2  875.9

810.1 852.2 808.3

922.4
833.4
755.9

930.8
841.5
763.4

938.3
848.8
7703

944.6
855.4
776.8

949.9
86l.1l
782.8

354.0
866.1
788.2

957.0
870.2
793.1

958.9
873.5
797.5

959.6
875 .9
801.3

959.2
877.4
8(4.5

95746
878.!
807.2

954.9
877.9
809.2

by
(

8

903.9
82644
611.7

912.3
834.4
618.8

919.7
84l1l.7
625.8

926.1
848.3
632.9

931.5
854.1
639.9

935.8
859.0
64648

939.0
863.2
6537

941.2
36646
6605

94242
869.1
667.1

942.2
870.8
673.6

94l.1
871.7
680.0

938.9
871.7
686,.1

876.8
807.5
698.4

885.1
8l5.3
698.9

892.5
822.5
699.3

899.0
829.0
699.8

904.5
834.9
700.2

909.0
840.0
700.7

912.6
A4h o4
701.1

915.2
848.0
701.6

916.8
£50.9
702.0

917.4
853.0
702.4

917.0
85443
702.8

915.5
854.9
703.2

839.0
24.94
847.1
25.13
85445
25.33
861.0
25.52
866.8
25.72
871.7
25.9i
875.7
26410
878.9
26479
88l.2
26.48
882.6
26.66
88342
26.84
882.8

27.01
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3o -4 .43U 953.7 951.0
827.6 882.0 £74.9 876.8

81il1l.5 852.1 809.8 §10.6
885.3 879.8 873.1 874.9

8l2.3 851.2 810.6 811.5

38 -5.333 942.5 94Q.1
882.1 876.9 870.4 87442

812.5 849.6 810.9 811.7
878.0 873.1 866.9 868.6

812.0 847.2 8105 811.3

49 -6.187 927.1 924.5
873.1 8¢68.4 862.7 864.3

8ll.u 844.1 809.06 810.3
86743 863.0 857.6 859.1

EV9.3 840. 2 8C8.0 80b.7

42 ) -7 .040 90 ?.b 905.8
600.7 v56.17 £51.7 853.1
853.4 849,17 £45.2 B46.4

8U04.2 830.4 803.1 803.7
845.4 = 542.0 837.9 839.u

8UC.8  824.5  199.0 803.3
v 830.6 833.6 829.9 £€31.0

796.8 818.0 795.9 796.3

406 -8.747 85d.1 850.9
827.2 824.6 821.3 622.2

792.2 819.48 791 .4 791.8

47 -9.173 84306 842.8
817.1 8l14.9 Blz.1l 8l2.9

167.1 8C3.1 7864 76647

935.7
b70.9
b92.0

931.3
869.2
697.7

926.C
866.7
703.2

916.7
563.4
706.’0

912.3
859.4
713.3

904.U
654.5
717.6G

894.8
C48.9
722.¢

884.8
84206
1642

873.9
835.5
7125.9

B&Z.2
8270’?
733.2

649.7
8l9.%

73641

B3v.C
£1Cs5
T738.7

vl3.1
854.7
763.6

909.7
853.7
703.9

905.4
851.9
704.3

900.1
849.4
704.6

8G3.9Y
B46.2
704.9

886.8
842.2
705.2

878.9
837.5
705.4

870.1
832.1
70547

360.5
82441
7G5.9

el
81%.4
iG6ol

339.2
8lc.0
706.3

827.5
804.1
706.4

88l.6
27.13
B79.5 "
27.34
876.0
27.50
872.38

27. >

866.1

27.79
BO6Z T
27.93
856.5.
28,905
849.5
28417
841.8

Zdﬂ(.’.-j

824 .4
28e47
8l4.7

28.55
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198 -90600 ) 828.8 8??.0 822.8 815.1 804.5
806.5 80446 802.3 8029 801.0 795.6

781.4 794.8 780.9 7811 740.8 706.6 25461

49 -10.027 813.3 812.5 808.4 802.3 793.7
795.3 793.8 791.9 792.5 790.9 186.6

775.3 785.9 774.8 775.0 742.6 70607 28467

50 10453 797.1 79646 793.4 7£8.8 782 .4
183.6 782.5 781.1 781.5 780.3 777.1

166.6 176.6 768.3 7684 7440 706.8 28.12

*$##$*******t***ﬁ##ﬁ**#*#*#***#*‘##t*#*********************#**#******#*******H

EXIT PRESSURE EXIT TEMPERATURE
(PSIA} (F)}
S384.2 T44.6

POWER PELR UNIT LENGTH (KW/FT) & 2.69

A ]

l$*$¥¢$*##*#*#***********#****#*##***##*#*******************#********#***t**#ﬂ?

89




85
Example 9,

The effect of undersized coolsnt holes on HIGR thermal-hydraulic
performance is to be studied. Consider the HTGR described in Example 8
but with a coolant hole diameter of 0.8 in. (instead of 1.0 in.).
Compare the following thermsl~hydraulic parameters for the "undersized
coolant hole' and '"normal” flow channels:

a. Location and magnitude of maximum fuel temperature.

b. Location and magnitude of maximum moderator temperature.

c. Exit ccolant feuperature.

Sclution.

Each flow chainel in the core will experience the same pressure
d:op. The "undersized coolant hole'" channel has a smaller diameter and
hence will pass less flow for the same pfessure loss (as shown in
Example 6). To assure approximately the same pressure loss as in the
"normal" channels, the mass velocity of the "undersized coolant hole"

channel must be &djusted. From the results of Example 6,

2/3
Syer = Sx Pyca/PW
= 2.35 x 10°  (0.8/1.0)2/3
= 2.025 x 10°  1bm/hr-ft2

The input to the HTGR Thermal-Hydraulics Code is the same as tﬁat
£or Example 8 except for the new value of G and the undersized D..
From the code (printout next 7 pages) the following results are ob-
tained:
a. The maximum fuel temperature 1s now 1189F and occurs at
Z = =3,63ft compared with 963 F at Z = =2.77ft for the

"normal" channel.

o E){)




86

Aok ok Rt Rk Rk kR Rk kR kR

HTGR THERMAL-HYDRAULICS CODE
PP I RR IR SIS RS LI S L 22 L2 S L 2

INPUT CATA

FUEL 0.D COOL O.De. SPACING

{ INCH) { INCH) ( INCH)
0.8000 0.8000 1.2500

MASS VELOCITY CORE INLET TEMPERATURE
(LB/HR=FT*%2) (F) ‘
0.2025E C6 500.00

VOLUMETRIC THERMAL

EXTRAPOLATED HEIGHT
SOURCE STRENGTH s .

(BTU/HR-FT*%x3) ( INCH)

0.3790E 07 281.60
OPTION 1

END OF ITNPUT DATA

ITTEITEIERSTEES SRS RS2 2222 2 22 2 2L 2

. COORDNATES OF THE NODES

OFU=0.0667 DCO0=0.0667

NODE NUMBER X COCRDINATE

ACTIVE CORE LENGTH
(INCH)
256.00

'CORE INLET PRESSURE
(PSIA)
600.00

$=0.1042

Y COORDINATE

OO NS W

0.18750E~01
0.23216E-01
0.35417€-01
0.00COGCE 00
C.11608E-01
0.11608E-01
0.16667E-01
0.00000€E 00
0.00000E 00

91

0.00000E 00
0.16667E~01
0.28868E~01
0.000L0E 00
0.16667E~01
0.28868E~01
0.61343E-01
U.28868E-01
0.56878E-01

|
|
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SHAPE FACTORS.

PATH SHAPE FACTOK
r S45 Je5625C00E 00
Sl4 0.3117972€E 00
| S$15 V.4822120E 00
S12M 0.2142628E 00
! 31EF 0.8660254E 0C
i $25 0.1161010E 01
S26 0.4999698E 00
S23M 0.4757009€ 00
S23F 0.8660254E 00
S5¢6 0.9514017€E 00
So8 0.4157T009E 00
589 0.2072095E 00
S68 0.1732048E 01
S36 0.6331320€E 00
S67 0.3545S11E 00
S69 0.2210881E 00
S317 Ue7788467E~01
ST9 0. 82C0294%E 00

AT THE INLET UF THE CORE

CHANNEL AVE. VELOCITY REYNLLDS # FRICTION FACTOR
(FT/SEC)
241.25 193218.4 0e0lol

w3 3% 3 e de e ok sk b e sk ok ok N o 2 ok o o g ek e dk el o ok ol oK oo Xk 3 e ok 2 e ok ok e e R et e ok S ekl e e o 3K X T o o e R ok de ok
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NO
T
TN(T)
l
534.8
2
548.4
3
5625
4
5772
5
592.3
6
607.8
7
62347
8
639.9
S
656e3
10
672.9
11

689.7

Z-L0C TO
N{Ll) TN(2) T
TN(8) TNE9)
10.453 564.7
SHle7 55067
545.6 534.6
10.027 588.3
9570.9 569.6
562.8 548.1
9.600 612.6
590.9 589.2
58046 562.2
Gel73 637 %
6lle4 609.4
599.0 576.8
8.747 662.6
632.4 630.0
617.9 591.8
_ 84320 688.2
653 .8 651l.1
63T7.2 607.3
7.893 714.0
67546 672.5
656.8 623.1
Te467 740.0
697.6 0943
676.7 639.2
71340 T66.1
719 .9 711642
696.9 655.6
6.613 792.2
T42.3 738.2
6.187 818.2
164.7 T60.4
737.6 688.8

88

T1/4 TL/2 T3/4
N(3) TN(4) TN(S) TN(6)
TSURF TBULK HTCOF
S64,2 5612 55648
549,.5 549.8 54848 54640
5347 501.1 64l1.3
5876 583.6 577.8
56841 56845 567.1 56343
548.3 503.6 641.5
611.7 60647 599.4
587.3 587.8 586.0 58143
562+4 50649 641e7
6364 630.4 621.6
607.0 607.6 605.5 599.9
577.0 510.8 642.0
661l.4 6544 644.2
627.3 628.0 62545 618.9
592.1 51545 6423
686.8 678.9 667.3
647.9 648¢7 645.9 63843
607.5 520486 64246
T12.5 70346 690.6
669.0 669.9 66607 658.1
623.4 52648 643.0
738.4 72846 Tl4.2
69043 691 .3 687.8 678.2
639.5 $33.4 643 .4
76443 753.6 737.9
711.8 712.9 709.0 69845
655.9 54046 643.9
790.3 7787 761.8
733.5 134.6 730.4 719.0
672.5 548.4 644.4%4
8l6.1 80347 785.6
755.2 756 .4 7519 739.5
689.3 55648 6544.9

93

TF

DELP

5507
21.86
569.6
21.93
589.2

22.02

© 609.3

2Z2.13
629.9
22420
651.0
22.40
672 4
22457
69%4.1
22.75
716.0
22.94
738.1
2315
760.1

23.38
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12 5.760 3544 .0 841.8 dl28e6 309.3
767.1 782.4 T76.9 1752 7173.3 T604.0
TV0Leb 758.0 105.6 706.1 S5be 1 645.5
13 5.333 869.5 867.2 653.2 8328
809.4 804.4 798.6 799.4% 7947 7805
123 .4 T73.3 122 <4 7122.9 575.1 646.0
14 4.907 8S4.7 £§92a.2 8775 B856.1
831l.5 826.3 820.1 82L.5 816.0 800.9
140.3 198. 6 739.3 739.8 HYbhet 646.7
15 4 48U G19.4 916.7 901 <4 379.0
853.3 847.9 841.3 B42.4 £37.0 821l.1
757.0 8l8.06 756.0 75645 56544 6473
| 5 4.053 943.4 940.7 G24eb 901.5
(7571 833.4 T12.6 773.1 6ubel 548,00
17 3.627 966 .9 9641 9417.6 923.4
895.9 889.9 882.8 8843 6779 BOU5
790.1 £57.8 789.0 789.5 &lTe3 64846
18 3.200 989.6 986.7 969.6 944 .8
S16.4 910.2 9J02.8 S0%.4 8977 B79.6
80064 676.8 805.2 805.8 628.7 64S.3
19 2.7T73 101lli.4 1008.4 YGUeY 965.4
U504 929.9 922.3 923.9 G617.0 898.2
8223 895.3 821l.0 821.6 640.5 650.0
20 24347 1032.3 1029.2 10il.4 985.3
955.6 949.0 941.1 94..8 Y357 916.2
837.9 913.2 836.6 837.2 05266 650.8
21 1.920 1052.4 1049,.1 1030.9 1004.3
974.1 967.4 959.2 S6J.Y G53.6 933.7
2¢< 1.493 1C71.0 1067.8 luasg o4 1022.4
Gyl.8 Y849 ST76.6 STd.3 970.8 950.4%
8673 947.2 8366.5 867.2 6TTe3 6bbl.2 -
23 1.067 108866 10E85.4 106€6a7 1039.4
1008.6 1J01e6 993.1 994 .8 98T.2 9663
582.1 563.1 880.8 8814 639G 653.0

94

8269
24.14
8475
24443
868 .38
24472
88G.06
25.02
909.9
25.33
929 .0
25.65
G48.7
25.90
967.0
26432
F84.6

2660

1CGl.2

2701
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24 0.640 1105.0 1101.8 1083.0 1055.5 1016.9
1024.4 1017.3 1008.7 1010.4 1002.7 981.5
895.9 978.2 894.5 895.2 T02.6 653.7 2T.36
25 0.213 1120.1 1116.9 1098.0 1070.3 1031.6
1039.2 1032.0 1023.4 1025.1 1017.2 995.8
909.1 992.4 907.7 908.4 T15.4 654.4 2T7.71
t>,
26 -G.213 1133.8 1130.6 1111?% 1084.0 1045.3
1052.9 1045.6 1036.9 1038.6 1030.7 1009.1 ,
921.7 10GC5.7 920.2 921.0 728.2 655.2 28.06
1065.5 1058.2 1049.4 1051.1 1043.,2 1021.5
933.6 1018.1 932.2 932.9 741.0 655.9 28442
28 ~-1.067 1156.9 1153.7 1135.0 1107.5 1069.1
1076.8 1069.5 1060.8 1062.4 1054.5 1032.8
944.8 1029.4 943 .4 944.1 753.7 656.6 28.77
29 —1s493 1166.3 1163.1 1144.5 1117.3 1079.3
1086.9 1079.6 1071.0 1072.6 1064.7 1043.0
955.4 1039.6 953.9 954.7 76643 657.3 29.12
30 ~14920 1174.0 1170.9 1152.6 1125.7 1088.1
1095.7 108845 1079.9 1081.5 1073.7 1052.1
965.1 1048.8 963.7 964.4, 778.7 658.0 29 .47
31 ~2+347 1180.2 1177.2 1159.1 1¥32.7 1095.7
1103.2 1096.1 1087.6 1089.2 1C81l.4 1060.2
974.1 1056.8 972.7 973 .4 791.0 658.7 29.81
32 - =2.773 1184.8 1181.8 11641 1138.2 1102.0
1109.3 1102.3 1094.0 1095.5 1087.9 1067.7
982.3 1U63.7 980.9 981.6 803.1 659.4 30.15
33 -3.200 1187.8 1184.8 1167.6 1142.3 1106.9
1114.1 1107.3 1099.1 1100.6 1C¢93.1 1072.6
989 .5 1069.4 98843 989.0 8l4.8 660.0 30.48
34 -3.627 1189.2 118643 1169.5 1144.9 1110.5
1117.5 1110.9 1102.9 1104.3 1057.0 1077.1
996.1 1073.9 994,.8 995.5 82643 €60.6 30.81
1119.5 1113.1 1105.3 1106.7 1099.7 108C.3
1001.7 1077.2 1000.4 1001.1 €37.5 56l1.2 31l.12

35
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l113.6

S0 44480 11867.0 11844 1168«7 11457
' 112062 1113.9 110645 1107.8 1101.0 1082.3
1U06 4 1079.3 1005.2 1005.8 B4842 661.8 31.43
37 ~4.,907 1183.06 1181.0 116640 1143.9 1113.1
1119.4 1113.4 11063 1107.6 11¢l.0 1083.0
1010.2 108042 1009.0 1009.6 85846 662.3 31473
38 -54333 117845 11761 11617 1140.7 1111.3
1117.3 11116 1104.8 1106.0 1099.8 1082.6
101561 1C79.9 1012.0 1012.5 66B8¢5 662.9 32.01
39 5.7 1171.9 1169.6 1156.0 113661 1108.2
1113.8 1108.4 1102.0 1103.1 1097.2 108049
1U15.0 1078.4 1013.9 1014.5 8775 6634 32.28
49 -6.187 1163.8 11616 114846 1130.0 1103.7
11C9.1 110440 10979 1099.0G 1093.4 1074.1
101640 1075.7 1015.0 1015.5 B86.8 663.8 3254
11030 109842 1092.5 105346 138843 107440
101l6.1 1071.8 1015.1 1015.6 89542 66443 32.738
42 -7.J40 1143.2 11413 1130.2 1113.9 1991 40
1095.7 1091.3 108640 108649 1u82.1 106848
1Ul1%.2 1066.8 - 1014.3. 1014.7 903.0 66447 33.01
43 ~T7e467 113049 1129.1 1118.9 1103.9 1082.9
1087.1 1083.1 1078.2 1079.1 1074.7 1062.5
1J13.3 1060.6 1012.5 101249 9102 665.0 33,24
44 -7e893 11172 1115.6 1106.3 1092.6 1073.5
10774 10737 1069.5 1070.1 1066.1 1055.1
1010.4 10%3.4 1009.8 10102 916.8 665.4 33.42
4% -8e320 1102.2 1100.8 1092.4 10802 1063.1
10665 1063.3 1059.3 1060.1 1C56¢5 1046.6
1306.9 10451 10062 10065 9223 6657 33459
46 ~84747 1086.1 1084.8 10775 106647 10516
105446 1051e7 104843 1048.9 16458 1037.2
10023 1035.8 170147 1002.0 92861 66640 33.75
47 ~9.173 1068.6 1067.7 106l.4 10521 1039.1
10417 10639.2 1036.2 103048 1034.1 1026.7
996.7 1025.5 996.2 99605 932.7 66642 33490
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4u -9.600 1050.5 1049.6 1044.3 1036.5 1025.6

1027.7 1025.7 1023.2 1023.7 1021.4 1015.3
990. 3 1014.3 989.9 990.1 936.7 666.4 34.02
49 -10.027 1031.2 1030.5 1026.¢ 1019.9 1011.2
1012.9 1011.3 1009.3 1009.7 1007.9 1003.0
S83.1 1002.2 982.7 982.9 939.9 666.6 34.12
50 -1G.453 1011.0 1010.5 1007.2 1002.5 99640
997.2 996.0 994.5 994.8 993.5 989.8
9749 989.2 974.7 974.8 942.5 666.7 34.21

e 3 2 ook e o ok ok 3% e 6 e ol o e ok e Ak Ak o ot o e ok 2 o ol ok o o oo ok o s e Xk ok e ok ok ok ek e sk ok o ko Sk ok ke kR K

EXIT PRESSURE - EXIT TEMPERATURE
(PSIA) (F)
583.5 943.6

POWER PER UNIT LENGTH (KW/FT) 3 2.69
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b. The maximum moderator temperature is now 1120F and occurs at
node 1 at Z = ~4.48ft compared with 890 F for node 1 at Z = -3.63
ft for the "normal" channel.
c. The helium exit temperature is now 944F compared to 745 F

for the '"normal” channel.




5.6 Listing of Code

C

C

(mmmmunae VP1 HTGR THERMAL-HYDRAULICS CODE.

C

C
INTEGER UP
REAL KFU KMOoKBC o NUsMDOTsKFULyKFU2
DIMENSICN T(9),A181),B(9)

C

c TEMPERATURE DEPENDENT PROPEKRTIES.

C
KFU(T)=0,15488E402-04T2135E-02%T 404467 76E-05¥T*42~C.10256E-08%

< T*%3

KMO(T 120,53309E+02=0431556E-01%1 +06629E-05%T##2
KBC(T)=0, 811425E~0140,100714E~03%T~0, 142851074 T##2
VIS(T)=0,40903E-01+0,62 74E-04%T~0,96]1 556~ 08K T#*2

!

C READING INPUT DATA.

C .

READ(545)DFU40CO,SeH

5 FORMAT(3F10.44F10,1)
READ(S+10)GINsTINyPIN

10 FORMAT(EL04342F10.1)
READ(5,15)QTPO,HE QP

15 FORMAT(EL10434F10414110)

PRINTOUT OF INPUT DATA.

WRITE(6420)
20 FORMATCLHL 92X/ /11 11115% Y e sosiitnksnnshbr bk errsnt /15X,

CYHTGR THERMAL=-HYDRAULICS CGODE'/L5X, ! #ktkippskmisspkahiipihhgagns

Full Tt Provided by ERIC.

ERIC 09
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) ¢y

L
¢
¢
¢
C
C
C

{V//15X%, VINPUT DATAY//)
WRITE({6425) DFU40C0O,SHH
25 FURMAT{L15Xs 'FUEL CeD'96Xo'CLUL Colia "y TXy PSPACING 9 TXy 'ACTIVE COURL
¢ LENGTHY 96Xs/15Xs Y (LINCH) " 49X, ¥ (INCH)? 49X,
<V (INCHI 14X, (INCH)' oLaX/15KyF6aéy9X4FOe419X9F6 44y
{14X+F6e2116X/)
WRITE(6930)GINsTIHyPIN
30 FORMAT(15Xs *HASS VELGCITY' 40Xy 'CORE INLET TEMPERATURE' 13X,
CVCURE INLET PRESSURE/L5K, ' [LB/HR=FT=%2) "4 13X," (F1",20X, " (PSIA}"/
CloXeElledgla4X ) FTa2y11X,FT142/)
WRITE(6435)QTPO,HE
35 FORMAT(I5Xy 'VCLUMETRIC THERMAL',4Xy 'EXTRAPQLATED HEIGHT' /15X, " SOUK
CCE STRENGTHY /15X, *(BTU/RR=FT¥®3) 1, 11X, LINCH) /15X ELL o4y 14X,
<Fe.2/1) |
WRITE(6449)CP
40 FORMAT(19Xo'GPTIONY 43X, 12/7/15%'t ND OF I NP UT DATA?Y/
(15X1“*******#******************“**““',////’

CUNVERTING INCHES TG FEET.

DFU=DFU/12.0
§=5/12.0
0CU=DC0/12.0
H=H/1Z40
hE=HE/12.0

A SYSTEM UF NODES 1S SET UP FOR THE FINITE-DIFFZRENCE ANALYSIS
OF HEAT TRANSFER IN THE GRAPHITE. THE ORIGIN OF THIS SYSTtcM,
THE CENTEK OF THE FUELsANL THE CENTER GF THE COOLANT HOLE FORM
A RIGHT=ANGLED TRIANGLE. THE 'X',4ND 'Y' COCGRDINATES GF THE
NUDES ARE CALCULATED IN TERMS CF SyTHE SPACINGy DFU,THE DiA-
METER OF THE FUEL,AND DCO,THE DIAMETER CF THE CUOLANT HOLE
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C AS FOLLOWS:

"

PI=ARCOS(~-1.0)
X1=5%C0OS(PI/340)-045%DFY

Y1=0.0
X2=5*%COS(P1/3.0)=-0.5%0FU*CUS(PI/6.0)
Y2=0,5¢DFU%SIN(PI/640)
X3=5%COS(P1/3.0)-0.5%DFU*COS(PI/3.0)
Y3=0,54%DFU*SIN(P1/3.0)

X4=0.0

Y4=0.0

X5=X2/2.0

Y5zY2

X6=X5

Y6=Y3

XT=0.5%¥0CC*SIN({PI/640)
YT=5%COS(P1/640)-0.5%0C0*COS(PI/640)
X8=0.,0

Y8=Y3

X9=0,0

Y9=5%COS(PI/640)=045%DCC

THE FOLLOWING SEGMENT CALCULATES THE CONDUCTION SHAPE FACTORS
ASSOCIATED WITH THE HEAT TRANSFER BETWEEN THE NODES. EACH SHAPE
FACTOR CORRESPONDS TO HALF THE SUM OF THE COTANGENTS OF THE
ANGLES ENCLOSING THE PATHS.

C
¢
C
C
C
C

S45=045%(X5/Y5¢( X1=X5)/Y5)
$14=0,5%(COTANIATAN(X5/Y5 ) +ATAN((X1=X5)/Y5)))
S15=045%(X5/Y5+(X2-X1)/Y2)
S12M=0.5%(X1-X5)/Y5

S12F=0.5%COTAN(PI/6.0)
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$29=0« S¥LCOTANCATANC{XZ2=XY)/Y2 ) +ATANCIXL=XD /YD) ) +CUTAN(ATAN( (X2
< =X6)/1Y6=Y2) +ATAN((Xb=X5) /{Y6-Y5))))

§26=0+5%((X6=X3)/(Y6~Y5)+(X3-X2}/(Y3-Y2))

S23M=Co 5% ((X2-X6)/(Y6-¥2))

S23F=0.5%COTAN(PI/6.0)

§56=0.S5#((X2-X6)/(Yo=Y2)+X5/(YE-Y5))

§58=045%( (X6=X5)/{Y6=Y5) +X5/(Y5-Y5))

§39=0.5%X6/(Y9~Y6)

56820, 5% ((YG=Y8)/X6+CITARIATANIX5/(V3=Y5) ) +ATAN( (Xbo=X51/
< (Ye~Y5) )i

§36=0,5%{ COTANIATANL(XT=X6) /LYT~Y6) J#ATANL[X3=XT)/(YT~Y3)) )+

< COTANIATAN((X2=X6)}/(Yo-Y2) ) +ATAN((X3=-X2)/(Y3=Y2})}))

$6T205¥(COTAN(PI-ATANIX6/(YG=Yo ) }=ATAN(XT/(YT-Y3)} ) )+ (X3=XT)/
< {YT=Y3)) ,

$09=u e S¥COTANIPI=PI/3aU-ATAN((YT=YS)/XT)=ATAN((X3=XT)/{YT-Y3) i~
< ATANUIXT-X6)/1YT=Y6)))

$37=045%(XT7-X6)/1YT-Y6)

§792045*CCTANIPI=ATANU(Y9-Y&) /X6 ) =ATANLLYT=YO) /{XT=Xb6) })

<

¢ PRINTOUT OF THE CUORDINATES AND THE SHAPE FACTORS.

WRITE(6945) OFU,DCOyS
43 FORMAT(/30X,'CUGROINATES SF THE NUDES'//L15Xy'DFU='4Fb44,y
<10Xo'DCC='.Fo.4.lOX.'S=',F0.4//)
WRITE(6450) XLoY1oX29Y29K5,Y34X4yYayX59Y59X09Y69XToYT9X89Yb9ATY0
53 FORMAT(15X, 'NGDE NUMBEK',5Xy'X CUURDINATE"+9X'Y COORDINATE'//C0X,
C VLV 1OKgELLaBylOXgELLaS/ 20Xy 2 g 1IXyE LS9 LOX9EL15/20Ky13 10X,y
C ElLle5910XoELLaS/20K V4 g LuXyELL o5y 10X0ELLa5/20X "5y 1OXsELLa54104
€ JEL1Le5/20X 0 0"y LOX9ELL1a5y LOX ELLa5/20Ke ' T4 9 L0X,EL1La5010XsELL S/
< ZUXi'B'1LOXotll.5110X1El1.5/20X:'9'110X1E11o5y10XpE11o5/)
WRITE(6955)
t5 FORMAT(LHL2X/71171717)
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WRITE(6,60) S4595144S15,512MyS12F952595269523M9523F95564558,589,
< S68,536456745699537,579

60 FORMAT(22X,"SHAPE FACTORS«*////15X, 'PATH'y 10X, *SHAPE FACTOR®//
C 15Xy 1545Y ) LOXgEL14sT/15K9 V5148 yL0X9EL4aT/15X4¥515%,10X,E1447/
< 15X 'S12MYy OX9El4aT/15Xe"S12F "y OX9EL4eT/15X 525" 10XsEL146 T/
< LOX'S260 4 L0XeELGaT/LOXK g S23MYy OXyEL14aT/15Xo1S23F"y 9X4E14.T
< J15Kg¥556 s LOXgEL4e T/L5Xy 558 y10XsE144T/15X, 1589 y10XyE1447/
< 15Xy 'S68Y 10XeEL4eT/15X, 536"y 10X EL4eT/15X9 567 ,10X5€E14.7/
< 16Xev569" 9 10XK4EL4eT/15K,2S3T ) L0XKEL4T/15X45T9,10XEL4aT///7)

C

C MASS FLOW RATE CALCULATION.

C .
MDGT=GIN*P[*DC0*%¥2/4.0

C

C SELECTION OF AXIAL CALCULATION INCREMENT,

C
DELL=H/5040

C

¢ CALCULATION OF PRESSURE LOSS AT INLET OF CORE,

C C
RHO=PIN*®144.,0/(TIN+460.0)/386.0
UB=GIN/RHO/3600.0
RE=UB*DCO*RHO/VISITIN)*3600.0
F=0,184/RE*%0,2
DELPF=F*DELL*RHO*UB**2/0C0/2.0/32.2¥10.0
DELPE=0.5*%RHO*UB%%2/240/3242 '

C

C PRINTQUT OF CORE INLET CONDITIONS.

C

WRITE(6465)
65 FURMAT(15Xy'AT THE INLET OF THE CORE'//)
WRITE(6970) UBsRE,F
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70 FURMAT(L5Xy'CHANNEL AVE. VELGCITY 92Xy 'REYNULDS #'9 3K, 'FRICTICN ®
CACTORY/21Xy Y (FT/SECH'/21XsFba2912XsFaaly8XyFTatt//)

WRITE(5,78)
75 FURMAT (! ##msnks sk $hokt Sos w2 bk R AR R R ERERERERE R RERRRBRURRE AL AL
CHRR R R RR RS ¥R R R AR A SR ERR R Rk KRR R S AR

<il17)
PRINTOUT GF COLUMN hEADINGS.

30 FORMAT(LHL 92X/ 77777715% ¢ ROY ¢ TXy P 2=LOCY 9 5Xs 1TOY 46Xy ' T1/4" 45X,
CUTL/2V g 5% 9V 13740 yTX VT J20Ka VTREL) Y o 4X, Y TN(2D Y 44Xy ' TN(3HY 44X,
CVIN(G) Y o4Xy 'TNIOE g aXy PINCE) /15Ky P TNCT) 94X P TNEB) Y 9 4Xs P TNIG) Y,
< 5X9tTSURF! 14Xy ' TBULK® 94X s " HTCLF* 45X, YDELPY//)

WRITE(648C)

CALCULATIUN CF CONDITICNS AT BEGINNING CF FIRST INCREMENT.
Pl=PIN-{ODELPE+DELPF)/144.0
181=TIN
INC=1
CALCULATIULN CF AXTAL CCORUINATE UF CENTER OF FIAST INCREMENT,
1C= H/2.0-DELL/ 2.0
INITIAL GUESS OF AVERAGE FUEL AND MUDERATOK TEMPERATURES FOR
THE FIRST INCKEMENTWTHESE ARE USED TQ EVALUATE THE THERMAL-

CONDLCTIVITIES IN THE CALCULATION OF THE MUDERATOR TEMPERATURE
DISTRIBUTIGN.

TMAV=TIN#300, y*CCS(PI*ZC/nt)
TFOAV=TIN+500. U%COSIPI*2C/HE)
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C CALCULATION OF AVERAGE BULK TEMPERATURE FOR INCREMENT.
; BuL
B5 QTPAV=QTPC#COS(PI*1C/HE) :

TB2=TB1+QTPAVEP XDFU¥X2 L 0¥DELL /4. 0/KDOT/ 1+ 248004240
C
¢ THE MULTIPLICATION BY 2 IN THE PREVIOUS CALCULATION IS REQUIRED
C BECAUSE TWICE THE ENERGY GENERATED IN ONE FUEL ROD ENTERS EACH
C COOLANT CHANNEL.
C

TBAV=(TBL+T82)/2,0
¢
C CALCULATION OF PRESSURE DROP AND EXIT PRESSURE FOR INCREMENT.
¢

RHO=P1¥14440/(TBAV#460,0) /3860

UB=GIN/RHO/3600.0

RE=UB*DCOSRHO/VIS(TBAV)¥3600.0

F=0.184/RE#$0,2

DELPF=F#DELL*RHO*UB¥$2/0C0/2,0/32,2

P2=PL=DELPF/144.40
C
C CALCULATION OF HEAT TRANSFER COEFFICIENT FOR INCREMENT.
c

PR=1,248%VIS(TBAV)/KBC(TBAV)

NU=040234RE#*0, 8%PR¥40, 4

HTC=NUKBC (TBAV)/DCO
c
C CALCULATION OF TEMPERATURE DISTRIBUTION IN GRAPHITE MODERATOR.
c
c
X |
C OBTAINING THE BEST GUESSES FOR AVERAGE FUEL AND MODERATOR
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TEKPERATURES FUR FINIT=-DIFFERENCE CALCULATION JF MODERATOR
TEMPERATURE DISTRIBUT[UNs

IFCINC.EQ.1) GU TG 95
THMAV=TBAV+(TMAV-TBAV)*CTPAV/TPCLE
TFJAV=TEAVH(TFIAV=-THAV)*JTPAV/QTPCLD
RAT[O=KFU(TFOAV)/KMC(TRAY)

CALCULATING THE MAIN 0olAGGNAL COEFFICIENTS FUuR THE COcFFICIENT
MATRIX UF THE NCDAL EQUATIOANS.

SI=51644515¢51ZM+RATIO*S12F
$2=5264525+4S12M+S12F¥RATIO+523M+RAT I0*523F
53=2536+337+523M+RATIO*S23F

54=5144345

35=545+45154525+4556+558
$6=556+526+S36456T+565+563
ST=S3T+56T+5T9+P1*DCO*HTC/ {24 G*KMO{TMAV]) )
58=5568+566+589 |
§9=5894S65+STG+{P I*DCOXHTC/ (244 L*KMCITMAV])

SETTING UP THt CCEFFICILNT MATRIX FCR SIMG@ SOLUTIGN CF KODAL-
EQUATIONS.

00 100 I=1,9

B{I1=0.0 |

DO 1G5 I=14¢El

A{1)=0.0

All)==51
ACLJ)=(S12M+#RATIU%S12F])

- h(28)=314

A(3T)=3515
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A(2)=A(10)
A(ll)=-52
A(20)=(S23M+RATIO*S23F)
A(38)=525
A(47)=526
A(12)=A(20)
A(48)=536
A(57)=8317
A(21)==§3
A(4)=514
A(40)=545
A(31)==54
A(5)=515
Al14)=525
A(50)=556
A(68)=558
A{41)=-S55
A(32)=545
A(42)=556
A(15)=526
A(24)=536
AL60)=567
A(78)=569
A(69)=568
A{51)=-56
A(25)=837
A(52)=56T
AL79)=579
Al61)=-57
A(71)=-58
A(44)=558
A(53)=568




A(8G)=589

A(BL)==$9

A(72)=549

A(>4)=569

Al63)=379

6L )==QTPAVERI#LFUX®2/(Gu W SxKKLITIAV))
vle)=ead38(11

- B(3)=B(1)
BT )==PL#0CUFHTC*TBAV/ (244 0xKML(THMAV))
B{9)=8(T]
NAN=9
KKS=U
C
C USING SIMi TO CBTAIN SULUTION GF NGDAL EQUATIONS.
C
CALL SIMQ(A,B,NNNsKKS]
D0 110 I=1,9
L1) T(I)=8(1)
C
C CALCULATICN OF AVERAGE TEMPERATURE AT SURFACES JF FUEL AND
L COOLANT FGR INCREMENT.
C
TF=(T(L)+2.0%T(2)#T(3)) /44y
TSAV={T(T)+T(G))/ 2.0
C
L CALCULATIGN OF TEMPERATUKE AT CENTER OF FUEL FOR INCREMENT. AX
L ITERATION TECHANIQUE 1s USEL TC OBTAIN FUEL THERMAL CUNGUCTIVITY
C HITHIN‘Z%.
C .

KFJL=KFU(TF)
115 TO=sTF+QTPAVXYFUS*240/16.0/KFUL
TFAVS=(TF+TC) /2.0
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KFU2=KFU(TFAVS)

ERR=ABS [ (KFUL-KFU2)/KFU2)

IF(ERR=0402 11254125,12C
120 KFU1=KFU2

Gu TG 115
C
¢ SAVING VALUES OF THERMAL CONDUCTIVITIES FOR LATER COMPARISONS
¢ .

125 COMPAL=KFU(TFOAV)
COMPA2=KMC{TMAV)

¢
C CHECK TO DETERMINE IF CURRECT MODERATOR AND FUEL THERMAL-
C CONDUCTIVITIES WERE USED IN MODERATOR FINITE-DIFFERENCE
C CALCULATIONS.IF NOT4AN ITERATION ON THE AVERAGE THERMAL-
C CONDUCTIVITIES IS PERFORMED,
¢
TFOAV=3,0/8,0%T045,0/8,0%TF |
TMAV=(T(L)4T(2)4T(3)4T(4)4T(S)4T(6)4T(T)+T(8)+T(9))/9.0
RAT1=ABS{ (COMPAL1-KFU(TFOAV) ) /COMPAL)
RAT2=ABS( (COMPA2-KMO(TMAV) )/ COMPA2)
IF(RAT14LE«0s02.AND.RAT24LE.0402) GO TO 130
60 T 95
C
C CALCULATION OF FUEL TEMPERATURE AT 1/4, 1/2, AND 3/4 FUEL RADII
C FOR INCREMENT.
c |

130 T14=TC-QTPAV*DFU**2,2/16.0/KFUL/16.0
T12=TO-QVPAVXDFU**2/164,0/KFU1/4.0
T34=TC~QTPAV*DFU**2,0/16.0/KFUL/1640%%,0

L]

~ PRINTOUT OF RESULT FOR CALCULATION INCREMENT.

[em)
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WRITE(69135) INCy2CoTOoT149T12,T349TH,ByTSAV,TBAV,HTC,DELPF
135 FORMATALSX 207X oFTa392XoFbalobXoFOu193XeFoale3XysFbalyéXoFbol/
20X 4F6aly5(3XeF6o1)/15Ky3(F6a193X) 91 XsF6elg2(03K,F6al)94XyFb6.2/)
IFCINCaEQelleOReINCoEQe2340ReINCoEQe35,0ReINCoEQe4T) WRITE(6455)

C
C _CHECK TO SEE IF CALCULATIONS HAVE BEEN COMPLETED FOR ENTIRE
C CORE.
¢
IF{INC-50) 14G1145,145
C
C SETTING CONDITIONS FOR BEGINNING OF NEXT CALCULATION INCREMENT.
c
140 INC=INC+]1
1C=1C-DELL
T81=TB2
P1=P2
QTPOLD=CTPAV
C
C TRANSFERRING TO START CALCULATIONS FOR NEXT INCREMENT.
C
6C TO 85
C
C CALCULATICN GF CORE EXIT CONDITIONS OF COGLANT.
C

145 RHO=P2%144,C/(TB2+4460.0)/386.0
UB=6IN/RHO/3600.0
RE=UB*DCO*KHU/VIS(TB2)*3600. 0
F=04184/RE**) 42
DELPF=F*DELL¥RHU*UB**2/DC0/240/35242%10 40
DELPE=RHO*UB#%2/2.0/32.42
PEX=P2~(DELPE+DELPF)/144.0
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TEX=TB2

C
C PRINTOUT OF CORE EXIT COGLANT CONDITIONS,
C

WRITE(6475)

WRITE(64150)

150 FORMAT(/915X, *EXIT PRESSURE' 410X, "EXIT TEMPERATURE! /19X,
<*(PSIA) Y, 18Xy (F)*/)
WRITE(64155)PEX,TEX
155 FORMAT{18XyFbel918XyFball

CALCULATION OF AVERAGE POWER OF FUEL RDD IN KW/FT,
PRINTOUT OF AVERAGE POWER.

OOy OO

POVL=QTPO*HESDFU**2/2.,0*SIN(PI*H/2.0/HE) /H
POVL=POVL/3412
WRITE(64160)PCVL
160 FORMAT(//15X,"PONER PER UNIT LENGTH (KW/FT) :'4F642///11)
WRITE(64:75)
WRITE(6455)
STOP
END

SUBROUTINE SIMQ
PURPQOSE

0BTAIN SOLUTION OF A SET OF SIMULTANEOUS LINEAR EQUATIONS,
AX=8

(ol IR o0 N o ¥ on T 90 B ot BN 0 I 9 B 9

USAGE
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CALL SIMQ(A¢ByNoKS)

DESCRIPTICN OF PARAMETEKS

A - MATRIX OF COEFFICIENTS STURED COLUMNWISE. THESE ARE
DESTROYED IN THE CCMPUTATION. THE SIZt JF MATRIX A IS
N BY N

B ~ VECTOR GF ORIGINAL CONSTANTS (LENGTH N)o THESE ARE
REPLACED BY FINAL SOLUTION VALUES, VECTUR X.

N - NUMBER OF EQUATIUNS AND VARIABLESe N MUST BE «GT. ONE.

KS = CUTPUT DIGIT
0 FOR A NORMAL SOLUTION

1 FOk A SINGULAR SET UF EQUATIONS

REMARKS
MATRIX A MUST BE GENERAL.
IF MATRIX IS SINGULAR 4 SCLUTION VALUES ARE SEANINGLESS.
AN ALTERNATIVE SCLUTION MAY BE OUBTAINED BY USING MATRIX
INVERSICN (MINV) AND MATRIX ?RODUCT (GMPRD) .«

SUBROUTINES AND FUNCTINN SUBPROGRAMS REQUIRED
NONE

ME THGD
METHCD CF SOLUTIGN IS BY ELIMINATION USING LARGEST PIVOTAL
DIVISGR., EACH STAGE CF ELIMIWATICN CONSISTS OF INTERCHANGING
ROWS WHEN NECESSARY TG AVCID OUIVISION BY ZERJ UR SMALL
ELEMENTS.,
THE FGRWARD SOLUTION TC CbTAIN VARIABLE N IS DONE IN
N STAGES. THE BACK SOLUTICN FOR THE OTHER VARIABLES IS
CALCULATED BY SUCCESSIVE SUBSTITUTICNS, FINAL SOLUTION
VALUES ARE DEVELOPED IN VECTOR by wITH VARIASLE 1 IN B(1),
VARIABLE 2 IN B(Z)tooooocool VARIABLE N [N B(N)o

¢
¢
C
¢
C
C
¢
"
C
C
C
¢
C
"
¢
¢
C
¢
C
C
¢
C
C
C
L
L
¢
C
L
C
C
¢
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OO O

OO

YO

(e}

20

30

IF NO PIVOT CAN BE FOUND EXCEEDING A TULERANCE OF 0.0,
THE MATRIX IS CONSIDEZRED SINGULAR AND KS IS SET TO l. THIS
TOLERANCE CAN BE MUDIFIED BY REPLACING THE FIRST STATEMENT.

00000000400 00B00000OVRFRR0CR00RSRGIQNRRRRORINEN0O00OR0OK0IRAE0QRORORNLINDY

SUBRUUTINE SIMQUA4B,yNyKS)
DIMENSION A(81)48(9)

FORWARD SOLUTION

T0L=0.0
KS=0

JJ==N

DO 65 J=1,4N
JY=J+]
Jd=JJ N+l
BIGA=0
[T=dd=J

D0 30 I=JyN

SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN
[J=1T+] .
IFCABS(BIGA)=ABSIA(IJ))) 20,3030
BIGA=A({IJ)
IMAX=]
CONTINUE
TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX)

[FUABS(BIGA)-TOL) 35,35,40
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35 KS=1

RETUXN
C
C INTERCHANGE ROWS IF NECLSSARY
C
40 1l=J¢h*{J=2)
[T=IMAX=J
D3 50 K=J4N
[1=]1+N
[2=11+1T
SAVE=A{I1)
AlLL)=A(12)
A(12)=SAVE
C
¢ DIVIDE EQUATION BY LEADING CGEFFICIENT
C
50 A(I1)=A(I1)/B1GA
SAVE=B( IMAX)
B(IMAX)=B(J)
B(J)=SAVE/BIGA
C :
¢ ELIMINATE NEXT VARIABLE
C .

LECJ=N) 55970955
55 1QS=N*{J-1]
DO 65 I[X=J¥YN
IXJ=ICQS+IX
[T=J=1X
DO 60 JX=JY,N
IXIX=N¥(JX=1)+1X
JIX=[XIX+ T
60 ACIXIXI=ACIXIX)=LALIXI)#a(JIX))
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o> BLIX)=B(IX)=(B6(J)*A(IXJ)}
C
C BACK SCLUTION
C
79 NY=N=-]
IT=N*N
00 80 J=1,4NY
[A=]T~-)
18=N-J
IC=N
DO 80 K=1,J
R{IB)=B(1B)=-A(I1A)*B(IC)
1A=[A=N
80 IC=IC-1
RETURN
END
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7.0 Problems

8.

10.

By performing an energy balance on a differential element with sides
dx, dy, and dz, derive the steady state heat conduction equation in
Cartesian coordinates.

Derive the steady state heat conduction equation in cylindrical
coordinates.

Develop an expression for the temperature distribution in a long,
thin, hollow cylindrical fuel rod with inner radius ry, outer radius
r,, and volumetric thermal source strength q'''. Assume that the
inner surface is insulated and at temperature Tj.

A long, thin, hollow cylindrical fuel rod with volumetric thermal
source strength q''' is cooled on both the inner and outer surfaces
(r = Ty and r = T, surfaces) such that the surface temperatures are
T, and Tos respectively. Derive an expression for the location of
the maximum temperature in the fuel.

Calculate the ratio of peak power to average power for a fuel rod of
constant cross section assuming that the volumetric thermal source
strength varies as q''' = q'!' cos (v2/H;) and that the extrapolation
length is 10% of the core hegght. Compare this ratio to that for the
case where the extrapolation length is assumed to be zero. '

Develop an expression for the steady state heat transfer rate through
a cylindrical shell of inside radius r; and outside radius r_ with
no internal energy generation. Your expression should contaln only
the outside surface temperature T,, the inside surface temperature
T4, the thermal conductivity k, tge length of the shell AL, ry, and
A HTGR fuel rod is 0.6 in. in diameter and 30 in. long. The surface
temperature of the rod is at 1200 F and §he volumetric. thermal source
strength of the rod is 8 x 106 Btu/hr-ft~. The thermal conductivity
is 12.0 Btu/hr-ft-F. Determine the temperature and heat transfer
rate at r = 0,2 in.

The fuel rod in Problem 7 fits inside a fuel hole that is 0.630 in.
in diameter. The 0.030 in. diametrical gap between the fuel rod and
moderator is filled with helium gas. Assuming that the heat transfer
through the helium is by molecular conduction only (kHe = 0,140
Btu/hr-ft-F) determine the temperature difference between the fuel
and moderator surfaces.

Develop the steady state finite~difference nodal equation for node 2
of Figure 2.

Develop the steady state finite-difference nodal equation for node 4
of Figure 2.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
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Develop the steady state finite-difference nodal equation for node 10
of Figure 2.

Develop the steady state finite-difference nodal equation for node E
of Figure 3. ‘

Develop the steady state finite-difference nodal equation for node H
of Figure 3. :

Develop the steady state finite-difference nodal equation for node J
of Figure 3.

A 25 foot long HTGR core containg 0.520 in. diameter coolant holes.

The average conditions in the core are 500 psia and 1000 F. The mass
velocity of the helium is 2.0 x 10° 1bm/hr-ft2. Determine the pres-

sure drop through the core.

Determine the effect on pressure drop of a 20% decrease in coolant
hole diameter for the core in Problem 15. Assume the coolant condi«-
tions and mass velocity remain the same.

Determine the heat transfer coefficient for the flow conditions of
Problem 15.

A HTGR core contains 0.75 in. diameter coolant holes through which
helium flows. At a particular location in the core the pressure is
500 psia, the temperature is 900 F and the coolant velocity is 216
ft/sec. Determine the heat transfer coefficient.

In a HTGR core the volumetric¢ thermal source strength varies

axially as q''' (2) = q ''' cos (nZ/H_ ). The energy generated in
each two fuel rods is rémoved by a coolant channel which has a mass
flow rate of m and an inlet temperature of T n' Designate the fuel
diameter as D_. and the coolant hole diameter as D . Develop an
expression for the axial variation of the tempera%ure at the surface
of the moderatcr. Your expression should contain only Tin’ qo"',
Df, Dc’ H, He, m, Cp, h, and Z.

From the expression developed in Problem 19 determine the axial lo-
cation where the moderator surface temperature (moderator-coolant
interface) 1is a maximum.

[ 4
A 4000 Mw (t) HTIGR contains 5400 right hexagonal prism fuel elements
each 14.2 in. across the flats and 31.2 in. long. The fuel elements
are stacked 8 high in the core. The uranium-thorium fuel in carbide
form is contained in 0.62 in. diameter fuel holes. The core is
cooled by the downward flow of helium through 0.825 in. diameter
coolant holes. The helium enters4at 600 F, 725 psia, and with an
average mass velocity of 8.3 x 10 1bm/hr-ft®. Each fue) element
assembly contains 132 fuel holes. The spacing between the fuel and
coolant holes in the element is 1.112 in. The thermal source
strength varies as q''' = qo"' cos 1TZ/He and H, = 1.1H. Determine
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22.

23.

24.

25.

26.
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the maximum fuel temperature and the maximum moderator temperature
in the core.

Determine the % increase in power that would produce a 1800 F
maximum fuel temperature for the core and flow conditions of Problem
21.

Determine the % reduction in core flow that would produce a 1800 F

maximum fuel temperature for the core and flow conditions of Problem
21.

A 2000 Mw (t) HTGR contains 2400 right hexagonal prism fuel assemblies
stacked 10 elements high to form the core. Each fuel element is

12 in. across the flats and 30 in. high. In each element the uranium-
thorium fuel in carbide form is contained in 150 fuel holes each 0.48
in. in diameter. The core is cooled by the downward flow of helium
through 0.56 in. coolant holes. The helium enters at 700 F, 600 psia,
and with an average velocity of 300 ft/sec. The spacing between the
fuel and coolant holes is 0.80 in. The axial power distribution is

a truncated cosine function with an extrapolation length of 16 in.
Determine the location and magnitude of the maximum fuel, moderator,
and coolant temperatures.

The coolant holes in one of the fuel element assembly colums of the
core in Problem 24 are undersized by 30%. Determine the % increase

in maximum fuel, moderator, and coolant temperatures over those for

the normal reactor fuel element assemblies.

Determine the % overpower that leads to a maximum fuel temperature
of 1800 F for the core and flow conditions of Problem 24.



